IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1711-d758147.html
   My bibliography  Save this article

The Energy Potential of the Lower Vistula River in the Context of the Adaptation of Polish Inland Waterways to the Standards of Routes of International Importance

Author

Listed:
  • Krzysztof Woś

    (State Water Holding Polish Waters, Żelazna 59a, 00-848 Warszawa, Poland
    Faculty of Maritime Economy and Transport Systems, Maritime University of Szczecin, Wały Chrobrego 1-2, 70-500 Szczecin, Poland)

  • Krzysztof Wrzosek

    (State Water Holding Polish Waters, Żelazna 59a, 00-848 Warszawa, Poland
    Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warszawa, Poland)

  • Tomasz Kolerski

    (Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

Abstract

Based on new policies of the European Union, green technologies are to be mostly considered for power generation. Hydropower generation is one of the essential elements of sustainable energy production. Therefore, specific attention, both economically and technically, needs to be given to this sector of energy production. The Vistula River in Poland is considered an international waterway. The power production potential of the river has been taken into account over the years. However, further configurations are needed to obtain a more in-depth ecological knowledge-base and economic plans, which are socially approved. In an attempt to make the project environmentally friendly, specific attention was put into sustainable transport. Different methods of transport were researched to find the most renewable transport combination, mainly based on waterways. Having performed a cost–benefit analysis related to the economic aspects of the project, it was found that such an investment is highly profitable (B/C = 2.81).

Suggested Citation

  • Krzysztof Woś & Krzysztof Wrzosek & Tomasz Kolerski, 2022. "The Energy Potential of the Lower Vistula River in the Context of the Adaptation of Polish Inland Waterways to the Standards of Routes of International Importance," Energies, MDPI, vol. 15(5), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1711-:d:758147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frey, Gary W. & Linke, Deborah M., 2002. "Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way," Energy Policy, Elsevier, vol. 30(14), pages 1261-1265, November.
    2. Míguez, J.L. & Porteiro, J. & López-González, L.M. & Vicuña, J.E. & Murillo, S. & Morán, J.C. & Granada, E., 2006. "Review of the energy rating of dwellings in the European Union as a mechanism for sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(1), pages 24-45, February.
    3. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dogmus, Özge Can & Nielsen, Jonas Ø., 2019. "Is the hydropower boom actually taking place? A case study of a South East European country, Bosnia and Herzegovina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 278-289.
    2. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.
    3. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    4. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    5. Năstase, Gabriel & Şerban, Alexandru & Năstase, Alina Florentina & Dragomir, George & Brezeanu, Alin Ionuţ & Iordan, Nicolae Fani, 2017. "Hydropower development in Romania. A review from its beginnings to the present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 297-312.
    6. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    7. Stevovic, Svetlana & Milovanovic, Zorica & Stamatovic, Milan, 2015. "Sustainable model of hydro power development—Drina river case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 363-371.
    8. Scherer, Laura & Pfister, Stephan, 2016. "Global water footprint assessment of hydropower," Renewable Energy, Elsevier, vol. 99(C), pages 711-720.
    9. Raupp, I. & Costa, F., 2021. "Hydropower expansion planning in Brazil - Environmental improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Mahwish Siraj & Humayun Khan, 2019. "Impact of Micro Hydropower Projects on Household Income, Expenditure and Diversification of Livelihood Strategies in Azad Jammu and Kashmir," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 58(1), pages 45-63.
    11. Theodoridou, Ifigeneia & Karteris, Marinos & Mallinis, Georgios & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6239-6261.
    12. Hao Wang & Sander Meijerink & Erwin van der Krabben, 2020. "Institutional Design and Performance of Markets for Watershed Ecosystem Services: A Systematic Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-26, August.
    13. Kaldellis, J.K., 2007. "The contribution of small hydro power stations to the electricity generation in Greece: Technical and economic considerations," Energy Policy, Elsevier, vol. 35(4), pages 2187-2196, April.
    14. Seungkook Roh & Jin Won Lee & Qingchang Li, 2019. "Effects of Rank-Ordered Feature Perceptions of Energy Sources on the Choice of the Most Acceptable Power Plant for a Neighborhood: An Investigation Using a South Korean Nationwide Sample," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    15. Moore, Trivess & Berry, Stephen & Ambrose, Michael, 2019. "Aiming for mediocrity: The case of australian housing thermal performance," Energy Policy, Elsevier, vol. 132(C), pages 602-610.
    16. Ying Yang & Bin Wang & Yuqiang Tian & Peng Chen, 2020. "Fractional-Order Finite-Time, Fault-Tolerant Control of Nonlinear Hydraulic-Turbine-Governing Systems with an Actuator Fault," Energies, MDPI, vol. 13(15), pages 1-20, July.
    17. Aslan, Yilmaz & Arslan, Oguz & Yasar, Celal, 2008. "A sensitivity analysis for the design of small-scale hydropower plant: Kayabogazi case study," Renewable Energy, Elsevier, vol. 33(4), pages 791-801.
    18. Bildirici, Melike E. & Gökmenoğlu, Seyit M., 2017. "Environmental pollution, hydropower energy consumption and economic growth: Evidence from G7 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 68-85.
    19. Dudhani, Surekha & Sinha, A.K. & Inamdar, S.S., 2006. "Assessment of small hydropower potential using remote sensing data for sustainable development in India," Energy Policy, Elsevier, vol. 34(17), pages 3195-3205, November.
    20. Oliver Hensengerth, 2013. "Chinese hydropower companies and environmental norms in countries of the global South: the involvement of Sinohydro in Ghana’s Bui Dam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(2), pages 285-300, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1711-:d:758147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.