IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p505-d722339.html
   My bibliography  Save this article

Parametric Analysis Using CFD to Study the Impact of Geometric and Numerical Modeling on the Performance of a Small Scale Horizontal Axis Wind Turbine

Author

Listed:
  • Muhammad Salman Siddiqui

    (Faculty of Science and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway
    These authors contributed equally to this work.)

  • Muhammad Hamza Khalid

    (Department of Electrical Engineering, Mathematics & Computer Science, University of Twente, 7500 AE Enschede, The Netherlands
    These authors contributed equally to this work.)

  • Abdul Waheed Badar

    (Department of Mechanical Engineering, HITEC University, Taxila 47050, Pakistan
    These authors contributed equally to this work.)

  • Muhammed Saeed

    (Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
    These authors contributed equally to this work.)

  • Taimoor Asim

    (School of Engineering, Robert Gordon University, Aberdeen AB10 7GJ, UK
    These authors contributed equally to this work.)

Abstract

The reliance on Computational Fluid Dynamics (CFD) simulations has drastically increased over time to evaluate the aerodynamic performance of small-scale wind turbines. With the rapid variability in customer demand, industrial requirements, economic constraints, and time limitations associated with the design and development of small-scale wind turbines, the trade-off between computational resources and the simulation’s numerical accuracy may vary significantly. In the context of wind turbine design and analysis, high fidelity simulation under full geometric and numerical complexity is more accurate but pose significant demands from a computational standpoint. There is a need to understand and quantify performance deterioration of high fidelity simulations under reduced geometric or numerical approximation on a single small scale turbine model. In the present work, the flow past a small-scale Horizontal Axis Wind Turbine (HAWT) was simulated under various geometric and numerical configurations. The geometric complexity was varied based on stationary and rotating turbine conditions. In the stationary case, simple 2D airfoil, 2.5D blade, 3D blade sections are evaluated, while rotational effects are introduced for the configuration 3D blade, rotor only, and the full-scale wind turbine with and without the inclusion of a nacelle and tower. In terms of numerical complexity, the Single Reference Frame (SRF), Multiple Reference Frames (MRF), and the Sliding Meshing Interface (SMI) is analyzed over Tip Speed Ratios (TSR) of 3, 6, 10. The quantification of aerodynamic coefficients of the blade ( C l , C d ) and turbine ( C p , C t ) was conducted along with the discussion on wake patterns in comparison with experimental data.

Suggested Citation

  • Muhammad Salman Siddiqui & Muhammad Hamza Khalid & Abdul Waheed Badar & Muhammed Saeed & Taimoor Asim, 2022. "Parametric Analysis Using CFD to Study the Impact of Geometric and Numerical Modeling on the Performance of a Small Scale Horizontal Axis Wind Turbine," Energies, MDPI, vol. 15(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:505-:d:722339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arteaga-López, Ernesto & Ángeles-Camacho, Cesar & Bañuelos-Ruedas, Francisco, 2019. "Advanced methodology for feasibility studies on building-mounted wind turbines installation in urban environment: Applying CFD analysis," Energy, Elsevier, vol. 167(C), pages 181-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiran Siddappaji & Mark Turner, 2022. "Improved Prediction of Aerodynamic Loss Propagation as Entropy Rise in Wind Turbines Using Multifidelity Analysis," Energies, MDPI, vol. 15(11), pages 1-44, May.
    2. Taimoor Asim & Dharminder Singh & M. Salman Siddiqui & Don McGlinchey, 2022. "Effect of Stator Blades on the Startup Dynamics of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anbarsooz, M. & Amiri, M., 2022. "Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings," Energy, Elsevier, vol. 239(PD).
    2. Yang, Lin & Rojas, Jose I. & Montlaur, Adeline, 2020. "Advanced methodology for wind resource assessment near hydroelectric dams in complex mountainous areas," Energy, Elsevier, vol. 190(C).
    3. Oscar Garcia & Alain Ulazia & Mario del Rio & Sheila Carreno-Madinabeitia & Andoni Gonzalez-Arceo, 2019. "An Energy Potential Estimation Methodology and Novel Prototype Design for Building-Integrated Wind Turbines," Energies, MDPI, vol. 12(10), pages 1-21, May.
    4. Wu, Yan & Zhang, Shuai & Wang, Ruiqi & Wang, Yufei & Feng, Xiao, 2020. "A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner," Renewable Energy, Elsevier, vol. 146(C), pages 687-698.
    5. Xu, Wenhao & Li, Gaohua & Zheng, Xiaobo & Li, Ye & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building," Renewable Energy, Elsevier, vol. 177(C), pages 461-474.
    6. Yuan Li & Zengjin Xu & Zuoxia Xing & Bowen Zhou & Haoqian Cui & Bowen Liu & Bo Hu, 2020. "A Modified Reynolds-Averaged Navier–Stokes-Based Wind Turbine Wake Model Considering Correction Modules," Energies, MDPI, vol. 13(17), pages 1-19, August.
    7. Arteaga-López, Ernesto & Angeles-Camacho, César, 2021. "Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines," Energy, Elsevier, vol. 220(C).
    8. Yossri, Widad & Ben Ayed, Samah & Abdelkefi, Abdessattar, 2021. "Airfoil type and blade size effects on the aerodynamic performance of small-scale wind turbines: Computational fluid dynamics investigation," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:505-:d:722339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.