IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8736-d978715.html
   My bibliography  Save this article

Thermal Visualization and Performance Analysis in a Channel Installing Transverse Baffles with Square Wings

Author

Listed:
  • Smith Eiamsa-Ard

    (Division of System Engineering, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
    Department of Mechanical Engineering, Mahanakorn University of Technology, Bangkok 10530, Thailand)

  • Arnut Phila

    (Department of Mechanical Engineering, Mahanakorn University of Technology, Bangkok 10530, Thailand)

  • Khwanchit Wongcharee

    (Department of Mechanical Engineering, Mahanakorn University of Technology, Bangkok 10530, Thailand)

  • Varesa Chuwattanakul

    (School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Monsak Pimsarn

    (School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Naoki Maruyama

    (Division of Mechanical Engineering, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
    Engineering Innovation Unit, Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan)

  • Masafumi Hirota

    (Division of Mechanical Engineering, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan)

Abstract

The experimental examination of local heat transfer, thermal intensification, friction factors, and thermal performance factors (TPF) in a rectangular channel with square-winged transverse baffles (SW-TB) are presented in this paper. The purpose of this study is to modify the typical transverse baffles (TB) into square-winged transverse baffles (SW-TB) in order to improve the thermal performance and heat transfer rate of the channel. The effects of SW-TBs with various wing attack angles and Reynolds numbers on the heat transfer performance characteristics were examined using a thermochromic liquid crystal sheet. In the experiments, the SW-TBs were attached to the bottom wall of the channel, which had an aspect ratio (W:H) of 3.75:1. The SW-TBs had a width ( w ) of 150 mm, a square perforated cross-sectional area (a × b) of 8 × 8 mm 2 , and attack angles ( θ ) of 0° (solid transverse-baffle), 22.5°, 45°, 67.5°, and 90°. The bottom wall of the channel was evenly heated, while the other walls were insulated. The temperature contours on the heated surface were plotted using temperatures obtained through using the thermochromic liquid crystal (TLC) image-processing method. Experimental results revealed that the SW-TBs created multiple impinging jets, apart from the recirculation. At the proper attack angles ( θ = 22.5° and 45°), the SW-TBs offered greater heat transfer rates and caused lower friction losses, resulting in higher TPFs than the solid transverse baffles. In the current work, channels where the SW-TBs display a θ = 45° presented the greatest TPF, as high as 1.26. The multiple impinging jets issuing by the SW-TBs suppressed the size of the recirculation flow and allowed better contact between the fluid flow and channel wall.

Suggested Citation

  • Smith Eiamsa-Ard & Arnut Phila & Khwanchit Wongcharee & Varesa Chuwattanakul & Monsak Pimsarn & Naoki Maruyama & Masafumi Hirota, 2022. "Thermal Visualization and Performance Analysis in a Channel Installing Transverse Baffles with Square Wings," Energies, MDPI, vol. 15(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8736-:d:978715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marei Saeed Alqarni & Abid Ali Memon & Haris Anwaar & Usman & Taseer Muhammad, 2022. "The Forced Convection Analysis of Water Alumina Nanofluid Flow through a 3D Annulus with Rotating Cylinders via κ − ε Turbulence Model," Energies, MDPI, vol. 15(18), pages 1-17, September.
    2. Kumar, Anil & Kim, Man-Hoe, 2016. "Heat transfer and fluid flow characteristics in air duct with various V-pattern rib roughness on the heated plate: A comparative study," Energy, Elsevier, vol. 103(C), pages 75-85.
    3. Tandel, Hiren U. & Modi, Kalpesh V., 2022. "Experimental assessment of double-pass solar air heater by incorporating perforated baffles and solar water heating system," Renewable Energy, Elsevier, vol. 183(C), pages 385-405.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madhwesh Nagaraj & Manu Krishna Reddy & Arun Kumar Honnesara Sheshadri & Kota Vasudeva Karanth, 2022. "Numerical Analysis of an Aerofoil Fin Integrated Double Pass Solar Air Heater for Thermal Performance Enhancement," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    2. Zaharil, Hafiz Aman, 2021. "An investigation on the usage of different supercritical fluids in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 168(C), pages 676-691.
    3. Kumar, Raj & Sethi, Muneesh & Chauhan, Ranchan & Kumar, Anil, 2017. "Experimental study of enhancement of heat transfer and pressure drop in a solar air channel with discretized broken V-pattern baffle," Renewable Energy, Elsevier, vol. 101(C), pages 856-872.
    4. Bouadila, Salwa & Baddadi, Sara & Rehman, Tauseef-ur & Ayed, Rabeb, 2022. "Experimental investigation on the thermal appraisal of heat pipe-evacuated tube collector-based water heating system integrated with PCM," Renewable Energy, Elsevier, vol. 199(C), pages 382-394.
    5. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    6. Jin, Dongxu & Quan, Shenglin & Zuo, Jianguo & Xu, Shiming, 2019. "Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs," Renewable Energy, Elsevier, vol. 134(C), pages 78-88.
    7. Ning Zhang & Delin Li & Bo Gao & Dan Ni & Zhong Li, 2022. "Unsteady Pressure Pulsations in Pumps—A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    8. Anil Kumar & Man-Hoe Kim, 2016. "CFD Analysis on the Thermal Hydraulic Performance of an SAH Duct with Multi V-Shape Roughened Ribs," Energies, MDPI, vol. 9(6), pages 1-23, May.
    9. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    10. Singla, Mohit & Hans, Vishavjeet Singh & Singh, Sukhmeet, 2022. "CFD analysis of rib roughened solar evacuated tube collector for air heating," Renewable Energy, Elsevier, vol. 183(C), pages 78-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8736-:d:978715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.