IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8645-d976368.html
   My bibliography  Save this article

Numerical Analysis for Coal Gasification Performance in a Lab-Scale Gasifier: Effects of the Wall Temperature and Oxygen/Coal Ratio

Author

Listed:
  • Sunel Kumar

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Zhihua Wang

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Yong He

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Yanqun Zhu

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Kefa Cen

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

Abstract

The optimization of multiple factors for gasification performance using a 3D CFD model with advanced sub-models for single-stage drop tube coal gasification was compared with experimental results. A single-stage down-drop gasifier with multiple coal injectors and a single oxygen injector at the top of the gasifier was investigated at different temperatures and O 2 /coal ratios. A finite rate/eddy dissipation (FR/ED) model was employed to define the chemical reactions. Kinetic data for the various reactions were taken from previous work. The realizable k–ε turbulent model and Euler–Lagrangian framework were adopted to solve the turbulence equations and solid–gas interaction. First, various preliminary reactions were simulated to validate the reaction model with experimental data. Furthermore, various cases were simulated at various O/C ratios and wall temperatures to analyze the syngas species, temperature profile in the whole gasifier, exit temperature, carbon conversion, turbulent intensity, and velocity profile. The maximum CO was found to be 75.06% with an oxygen/coal ratio of 0.9 at 1800 °C. The minimum and maximum carbon conversions were found to be 97.5% and 99.8% at O/C 0.9 at 1200 °C and O/C 1.1 at 1800 °C, respectively.

Suggested Citation

  • Sunel Kumar & Zhihua Wang & Yong He & Yanqun Zhu & Kefa Cen, 2022. "Numerical Analysis for Coal Gasification Performance in a Lab-Scale Gasifier: Effects of the Wall Temperature and Oxygen/Coal Ratio," Energies, MDPI, vol. 15(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8645-:d:976368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    2. Jeong, Hyo Jae & Seo, Dong Kyun & Hwang, Jungho, 2014. "CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model," Applied Energy, Elsevier, vol. 123(C), pages 29-36.
    3. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    4. Diba, Mst Farhana & Karim, Md Rezwanul & Naser, Jamal, 2022. "CFD modelling of coal gasification in a fluidized bed with the effects of calcination under different operating conditions," Energy, Elsevier, vol. 239(PC).
    5. Chen, Chih-Jung & Hung, Chen-I. & Chen, Wei-Hsin, 2012. "Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier," Applied Energy, Elsevier, vol. 100(C), pages 218-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    2. Chen, Xiaodong & Kong, Lingxue & Bai, Jin & Dai, Xin & Li, Huaizhu & Bai, Zongqing & Li, Wen, 2017. "The key for sodium-rich coal utilization in entrained flow gasifier: The role of sodium on slag viscosity-temperature behavior at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 1241-1249.
    3. Li, Yu & Fan, Weidong, 2016. "Effect of char gasification on NOx formation process in the deep air-staged combustion in a 20kW down flame furnace," Applied Energy, Elsevier, vol. 164(C), pages 258-267.
    4. Li, Zhengkuan & Tian, Songfeng & Zhang, Du & Chang, Chengzhi & Zhang, Qian & Zhang, Peijie, 2022. "Optimization study on improving energy efficiency of power cycle system of staged coal gasification coupled with supercritical carbon dioxide," Energy, Elsevier, vol. 239(PC).
    5. Fang, Neng & Li, Zhengqi & Liu, Shuxuan & Xie, Cheng & Zeng, Lingyan & Chen, Zhichao, 2021. "Experimental air/particle flow characteristics of an 80,000 Nm3/h fly ash entrained-flow gasifier with different multi-burner arrangements," Energy, Elsevier, vol. 215(PB).
    6. Wang, Dandan & Li, Sheng & He, Song & Gao, Lin, 2019. "Coal to substitute natural gas based on combined coal-steam gasification and one-step methanation," Applied Energy, Elsevier, vol. 240(C), pages 851-859.
    7. Bassani, Andrea & Pirola, Carlo & Maggio, Enrico & Pettinau, Alberto & Frau, Caterina & Bozzano, Giulia & Pierucci, Sauro & Ranzi, Eliseo & Manenti, Flavio, 2016. "Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production," Applied Energy, Elsevier, vol. 184(C), pages 1284-1291.
    8. Jeong, Hyo Jae & Seo, Dong Kyun & Hwang, Jungho, 2014. "CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model," Applied Energy, Elsevier, vol. 123(C), pages 29-36.
    9. Adeyemi, Idowu & Janajreh, Isam & Arink, Thomas & Ghenai, Chaouki, 2017. "Gasification behavior of coal and woody biomass: Validation and parametrical study," Applied Energy, Elsevier, vol. 185(P2), pages 1007-1018.
    10. Wang, Haopeng & Chen, Zhichao & Zhang, Bin & Zeng, Lingyan & Li, Zhengqi & Zhang, Xiaoyan & Fang, Neng & Liu, Xiaoying, 2019. "Thermal-calculation method for entrained-flow coal gasifiers," Energy, Elsevier, vol. 166(C), pages 373-379.
    11. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    12. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    13. Kim, Ryang-Gyoon & Hwang, Chan-Won & Jeon, Chung-Hwan, 2014. "Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure," Applied Energy, Elsevier, vol. 129(C), pages 299-307.
    14. Ouyang, Ziqu & Song, Wenhao & Li, Shiyuan & Liu, Jingzhang & Ding, Hongliang, 2020. "Experiment study on NOx emission characteristics of the ultra-low volatile fuel in a 2 MW novel pulverized fuel self-sustained preheating combustor," Energy, Elsevier, vol. 209(C).
    15. Chen, Jianjun & Lam, Hon Loong & Qian, Yu & Yang, Siyu, 2021. "Combined energy consumption and CO2 capture management: Improved acid gas removal process integrated with CO2 liquefaction," Energy, Elsevier, vol. 215(PA).
    16. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    17. Kim, Mukyeong & Ye, Insoo & Jo, Hyunbin & Ryu, Changkook & Kim, Bongkeun & Lee, Jeongsoo, 2020. "New reduced-order model optimized for online dynamic simulation of a Shell coal gasifier," Applied Energy, Elsevier, vol. 263(C).
    18. Schulze, S. & Richter, A. & Vascellari, M. & Gupta, A. & Meyer, B. & Nikrityuk, P.A., 2016. "Novel intrinsic-based submodel for char particle gasification in entrained-flow gasifiers: Model development, validation and illustration," Applied Energy, Elsevier, vol. 164(C), pages 805-814.
    19. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    20. Li, Tian & Niu, Yanqing & Wang, Liang & Shaddix, Christopher & Løvås, Terese, 2018. "High temperature gasification of high heating-rate chars using a flat-flame reactor," Applied Energy, Elsevier, vol. 227(C), pages 100-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8645-:d:976368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.