IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6143-d896629.html
   My bibliography  Save this article

Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment

Author

Listed:
  • Adrian Neacsa

    (Mechanical Engineering Department, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania
    School of Advanced Studies of the Romanian Academy (SCOSAAR), 010071 Bucharest, Romania)

  • Cristian Nicolae Eparu

    (Well Drilling, Extraction and Transport of Hydrocarbons Department, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania)

  • Doru Bogdan Stoica

    (Well Drilling, Extraction and Transport of Hydrocarbons Department, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania)

Abstract

Taking into account the international policies in the field of environmental protection in the world in general, and in the European Union in particular, the reduction of greenhouse gas (GHG) emissions, and primarily of carbon dioxide, has become one of the most important objectives. This can be obtained through various renewable energy sources and non-polluting technologies, such as the mixing of hydrogen and natural gas. Combining hydrogen with natural gas is an emerging trend in the energy industry and represents one of the most important changes in the efforts to achieve extensive decarbonisation. The importance of this article consists of carrying out a techno-economic study based on the simulation of annual consumptions regarding the construction and use of production capacities for hydrogen to be used in mixtures with natural gas in various percentages in the distribution network of an important operator in Romania. In order to obtain relevant results, natural gas was treated as a mixture of real gases with a known composition as defined in the chromatographic bulletin. The survey presents a case study for the injection of 5%, 10%, and 20% hydrogen in the natural gas distribution system of Bucharest, the largest city in Romania. In addition to conducting this techno-economic study, the implications for final consumers of this technical solution in reducing greenhouse gas emissions—mainly those of carbon dioxide from combustion—are also presented.

Suggested Citation

  • Adrian Neacsa & Cristian Nicolae Eparu & Doru Bogdan Stoica, 2022. "Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment," Energies, MDPI, vol. 15(17), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6143-:d:896629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacek Jaworski & Paweł Kułaga & Giorgio Ficco & Marco Dell’Isola, 2021. "Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures," Energies, MDPI, vol. 14(22), pages 1-14, November.
    2. Enrico Vaccariello & Riccardo Trinchero & Igor S. Stievano & Pierluigi Leone, 2021. "A Statistical Assessment of Blending Hydrogen into Gas Networks," Energies, MDPI, vol. 14(16), pages 1-17, August.
    3. Zhihua Chen & Hui Wang & Tongxia Li & Ieongcheng Si, 2021. "Demand for Storage and Import of Natural Gas in China until 2060: Simulation with a Dynamic Model," Sustainability, MDPI, vol. 13(15), pages 1-19, August.
    4. Huaping Sun & Rehmat Ullah Awan & Muhammad Atif Nawaz & Muhammad Mohsin & Abdul Khaliq Rasheed & Nadeem Iqbal, 2021. "Assessing the socio-economic viability of solar commercialization and electrification in south Asian countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9875-9897, July.
    5. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    6. Adrian Neacsa & Mirela Panait & Jianu Daniel Muresan & Marian Catalin Voica, 2020. "Energy Poverty in European Union: Assessment Difficulties, Effects on the Quality of Life, Mitigation Measures. Some Evidences from Romania," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    7. Xavier Rixhon & Gauthier Limpens & Diederik Coppitters & Hervé Jeanmart & Francesco Contino, 2021. "The Role of Electrofuels under Uncertainties for the Belgian Energy Transition," Energies, MDPI, vol. 14(13), pages 1-23, July.
    8. Jörg Leicher & Johannes Schaffert & Hristina Cigarida & Eren Tali & Frank Burmeister & Anne Giese & Rolf Albus & Klaus Görner & Stéphane Carpentier & Patrick Milin & Jean Schweitzer, 2022. "The Impact of Hydrogen Admixture into Natural Gas on Residential and Commercial Gas Appliances," Energies, MDPI, vol. 15(3), pages 1-13, January.
    9. Idris Al Siyabi & Arwa Al Mayasi & Aiman Al Shukaili & Sourav Khanna, 2021. "Effect of Soiling on Solar Photovoltaic Performance under Desert Climatic Conditions," Energies, MDPI, vol. 14(3), pages 1-18, January.
    10. Nicholas Gurieff & Behdad Moghtaderi & Rahman Daiyan & Rose Amal, 2021. "Gas Transition: Renewable Hydrogen’s Future in Eastern Australia’s Energy Networks," Energies, MDPI, vol. 14(13), pages 1-20, July.
    11. Adrian Neacșa & Mirela Panait & Jianu Daniel Mureșan & Marian Catalin Voica & Otilia Manta, 2022. "The Energy Transition between Desideratum and Challenge: Are Cogeneration and Trigeneration the Best Solution?," IJERPH, MDPI, vol. 19(5), pages 1-22, March.
    12. Paul Glanville & Alex Fridlyand & Brian Sutherland & Miroslaw Liszka & Yan Zhao & Luke Bingham & Kris Jorgensen, 2022. "Impact of Hydrogen/Natural Gas Blends on Partially Premixed Combustion Equipment: NO x Emission and Operational Performance," Energies, MDPI, vol. 15(5), pages 1-31, February.
    13. Yifei Lu & Thiemo Pesch & Andrea Benigni, 2021. "Simulation of Coupled Power and Gas Systems with Hydrogen-Enriched Natural Gas," Energies, MDPI, vol. 14(22), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    2. Adrian Neacsa & Jianu Daniel Muresan & Marian Catalin Voica & Otilia Manta & Mihail Vincentiu Ivan, 2023. "Oil Price—A Sensor for the Performance of Romanian Oil Manufacturing Companies," Energies, MDPI, vol. 16(5), pages 1-18, February.
    3. Cristian Nicolae Eparu & Adrian Neacsa & Doru Bogdan Stoica, 2022. "Gas Losses in the Distribution Networks: An Interdisciplinary Analysis," Energies, MDPI, vol. 16(1), pages 1-23, December.
    4. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    5. Alexandros Kafetzis & Michael Bampaou & Giorgos Kardaras & Kyriakos Panopoulos, 2023. "Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case," Energies, MDPI, vol. 16(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    2. Johannes Schaffert, 2022. "Progress in Power-to-Gas Energy Systems," Energies, MDPI, vol. 16(1), pages 1-9, December.
    3. Adrian Neacsa & Jianu Daniel Muresan & Marian Catalin Voica & Otilia Manta & Mihail Vincentiu Ivan, 2023. "Oil Price—A Sensor for the Performance of Romanian Oil Manufacturing Companies," Energies, MDPI, vol. 16(5), pages 1-18, February.
    4. Cristian Nicolae Eparu & Adrian Neacsa & Doru Bogdan Stoica, 2022. "Gas Losses in the Distribution Networks: An Interdisciplinary Analysis," Energies, MDPI, vol. 16(1), pages 1-23, December.
    5. Ahtasham Nasir & Muhammad Zahir Faridi & Hammad Hussain & Khawaja Asif Mehmood, 2021. "Energy Consumption and Bi-Sectoral Output in Pakistan: A Disaggregated Analysis," iRASD Journal of Economics, International Research Alliance for Sustainable Development (iRASD), vol. 3(2), pages 68-79, September.
    6. Zbysław Dobrowolski & Grzegorz Drozdowski & Mirela Panait & Arkadiusz Babczuk, 2022. "Can the Economic Value Added Be Used as the Universal Financial Metric?," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    7. Olatz Azurza-Zubizarreta & Izaro Basurko-PerezdeArenaza & Eñaut Zelarain & Estitxu Villamor & Ortzi Akizu-Gardoki & Unai Villena-Camarero & Alvaro Campos-Celador & Iñaki Barcena-Hinojal, 2021. "Urban Energy Transitions in Europe, towards Low-Socio-Environmental Impact Cities," Sustainability, MDPI, vol. 13(21), pages 1-29, October.
    8. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    9. Chi Yong & Mu Tong & Zhongyi Yang & Jixian Zhou, 2023. "Conventional Natural Gas Project Investment and Decision Making under Multiple Uncertainties," Energies, MDPI, vol. 16(5), pages 1-30, February.
    10. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    11. Eleonora Riva Sanseverino & Le Quyen Luu, 2022. "Critical Raw Materials and Supply Chain Disruption in the Energy Transition," Energies, MDPI, vol. 15(16), pages 1-5, August.
    12. Janusz Nesterak & Marta Kołodziej-Hajdo & Michał J. Kowalski, 2023. "Controlling in the Process of Development of the Energy and Heating Sector Based on Research of Enterprises Operating in Poland," Energies, MDPI, vol. 16(2), pages 1-30, January.
    13. Md. Harun Ur Rashid & Noman Uddin & Md. Shariful Haque & Syed Zabid Hossain, 2022. "Good governance and tax evasion: mediating effect of socioeconomic conditions," Asia-Pacific Journal of Regional Science, Springer, vol. 6(2), pages 759-776, June.
    14. Igawa, Moegi & Managi, Shunsuke, 2022. "Energy poverty and income inequality: An economic analysis of 37 countries," Applied Energy, Elsevier, vol. 306(PB).
    15. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "Validation of a Simulation-Based Pre-Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African Shopping Centres," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    16. Rafał Nagaj, 2022. "Macroeconomic Policy versus Fuel Poverty in Poland—Support or Barrier," Energies, MDPI, vol. 15(13), pages 1-22, June.
    17. Pavel Kuznetsov & Dmitry Kotelnikov & Leonid Yuferev & Vladimir Panchenko & Vadim Bolshev & Marek Jasiński & Aymen Flah, 2022. "Method for the Automated Inspection of the Surfaces of Photovoltaic Modules," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    18. Lena Maria Ringsgwandl & Johannes Schaffert & Nils Brücken & Rolf Albus & Klaus Görner, 2022. "Current Legislative Framework for Green Hydrogen Production by Electrolysis Plants in Germany," Energies, MDPI, vol. 15(5), pages 1-16, February.
    19. Adrian Neacșa & Mirela Panait & Jianu Daniel Mureșan & Marian Catalin Voica & Otilia Manta, 2022. "The Energy Transition between Desideratum and Challenge: Are Cogeneration and Trigeneration the Best Solution?," IJERPH, MDPI, vol. 19(5), pages 1-22, March.
    20. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6143-:d:896629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.