IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4797-d852548.html
   My bibliography  Save this article

Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions

Author

Listed:
  • Sajid Sarwar

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan)

  • Muhammad Yaqoob Javed

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan)

  • Mujtaba Hussain Jaffery

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan)

  • Muhammad Saqib Ashraf

    (Department of Electrical Engineering, Government College University, Faisalabad 38000, Pakistan)

  • Muhammad Talha Naveed

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan)

  • Muhammad Annas Hafeez

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan)

Abstract

Photovoltaic (PV) solar energy is a very promising renewable energy technology, as solar PV systems are less efficient because of climate conditions, temperature, and irradiance change. So, to resolve this problem, two PV topologies are used, i.e., centralized and distributed PV systems. The centralized technique is quicker than the distributed technique in terms of convergence speed and a faster power tracking approach. In the event of uniform irradiance, the centralized system also has the benefit of supplying superior energy, but in PS scenarios, a huge amount of energy is lost. However, the distributed approach requires current and voltage measurements at each panel, resulting in a massive data set. Nevertheless, in the event of shading circumstances, the distributed technique is highly effective because a modular level power electronics (MLPE) converter is used. While in a centralized PV system, there is only a single DC-DC converter for the whole PV system. In this research work, a DFO-based DC-DC converter is designed for modular level, with an ability to perform a rapid shutdown of the module under fire hazard conditions, troubleshooting, and monitoring of a module in a very efficient way. The robustness of the proposed MPPT DFO algorithm is tested with different techniques such as Cuckoo Search (CS), Fruit Fly Optimization (FFO), Particle swarm optimization (PSO), Incremental conductance (InC), and Perturb and observe(P&O) techniques. The proposed technique shows better results in terms of MPPT efficiency, dynamic responsiveness, and harmonics. Furthermore, the result of MLPE and the centralized system is verified by using the Helioscope with different inverter companies like SMA, Tigo, Enphase, Solar edge, and Huawei. The results prove that MLPE is a better option in the case of shading region for attaining the maximum power point.

Suggested Citation

  • Sajid Sarwar & Muhammad Yaqoob Javed & Mujtaba Hussain Jaffery & Muhammad Saqib Ashraf & Muhammad Talha Naveed & Muhammad Annas Hafeez, 2022. "Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions," Energies, MDPI, vol. 15(13), pages 1-39, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4797-:d:852548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    2. Saravanan, S. & Ramesh Babu, N., 2016. "Maximum power point tracking algorithms for photovoltaic system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 192-204.
    3. Yi Jin & Wenhui Hou & Guiqiang Li & Xiao Chen, 2017. "A Glowworm Swarm Optimization-Based Maximum Power Point Tracking for Photovoltaic/Thermal Systems under Non-Uniform Solar Irradiation and Temperature Distribution," Energies, MDPI, vol. 10(4), pages 1-13, April.
    4. Tarek A. Boghdady & Yasmin E. Kotb & Abdullah Aljumah & Mahmoud M. Sayed, 2022. "Comparative Study of Optimal PV Array Configurations and MPPT under Partial Shading with Fast Dynamical Change of Hybrid Load," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    5. Hyeon-Seok Lee & Jae-Jung Yun, 2019. "Advanced MPPT Algorithm for Distributed Photovoltaic Systems," Energies, MDPI, vol. 12(18), pages 1-17, September.
    6. Tingting Pei & Xiaohong Hao & Qun Gu, 2018. "A Novel Global Maximum Power Point Tracking Strategy Based on Modified Flower Pollination Algorithm for Photovoltaic Systems under Non-Uniform Irradiation and Temperature Conditions," Energies, MDPI, vol. 11(10), pages 1-16, October.
    7. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    8. Muhammad Mateen Afzal Awan & Muhammad Yaqoob Javed & Aamer Bilal Asghar & Krzysztof Ejsmont, 2022. "Performance Optimization of a Ten Check MPPT Algorithm for an Off-Grid Solar Photovoltaic System," Energies, MDPI, vol. 15(6), pages 1-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lilia Tightiz & Saeedeh Mansouri & Farhad Zishan & Joon Yoo & Nima Shafaghatian, 2022. "Maximum Power Point Tracking for Photovoltaic Systems Operating under Partially Shaded Conditions Using SALP Swarm Algorithm," Energies, MDPI, vol. 15(21), pages 1-17, November.
    2. Ngoc Thien Le & Thanh Le Truong & Widhyakorn Asdornwised & Surachai Chaitusaney & Watit Benjapolakul, 2023. "Energy Production Analysis of Rooftop PV Systems Equipped with Module-Level Power Electronics under Partial Shading Conditions Based on Mixed-Effects Model," Energies, MDPI, vol. 16(2), pages 1-15, January.
    3. Galal Al-Muthanna & Shuhua Fang & Ibrahim AL-Wesabi & Khaled Ameur & Hossam Kotb & Kareem M. AboRas & Hassan Z. Al Garni & Abdullahi Abubakar Mas’ud, 2023. "A High Speed MPPT Control Utilizing a Hybrid PSO-PID Controller under Partially Shaded Photovoltaic Battery Chargers," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    4. Chanuri Charin & Dahaman Ishak & Muhammad Ammirrul Atiqi Mohd Zainuri & Baharuddin Ismail & Turki Alsuwian & Adam R. H. Alhawari, 2022. "Modified Levy-based Particle Swarm Optimization (MLPSO) with Boost Converter for Local and Global Point Tracking," Energies, MDPI, vol. 15(19), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    2. Yang Meng & Zunliang Chen & Hui Cheng & Enpu Wang & Baohua Tan, 2023. "An Efficient Variable Step Solar Maximum Power Point Tracking Algorithm," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    4. Goudarzian, Alireza & Khosravi, Adel & Raeisi, Heidar Ali, 2020. "Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation," Renewable Energy, Elsevier, vol. 157(C), pages 1156-1170.
    5. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    6. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    7. Ghazi A. Ghazi & Hany M. Hasanien & Essam A. Al-Ammar & Rania A. Turky & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi, 2022. "African Vulture Optimization Algorithm-Based PI Controllers for Performance Enhancement of Hybrid Renewable-Energy Systems," Sustainability, MDPI, vol. 14(13), pages 1-26, July.
    8. Muhannad Alaraj & Anirudh Dube & Ibrahim Alsaidan & Mohammad Rizwan & Majid Jamil, 2021. "Design and Development of a Proficient Converter for Solar Photovoltaic Based Sustainable Power Generating System," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    9. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    10. Jiang, Joe-Air & Su, Yu-Li & Kuo, Kun-Chang & Wang, Chien-Hao & Liao, Min-Sheng & Wang, Jen-Cheng & Huang, Chen-Kang & Chou, Cheng-Ying & Lee, Chien-Hsing & Shieh, Jyh-Cherng, 2017. "On a hybrid MPPT control scheme to improve energy harvesting performance of traditional two-stage inverters used in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1113-1128.
    11. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    12. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    13. Marcin Walczak & Leszek Bychto, 2023. "Transients in Input and Output Signals in DC–DC Converters Working in Maximum Power Point Tracking Systems," Energies, MDPI, vol. 16(12), pages 1-12, June.
    14. Alexandro Ortiz & Efrain Mendez & Israel Macias & Arturo Molina, 2022. "Earthquake Algorithm-Based Voltage Referenced MPPT Implementation through a Standardized Validation Frame," Energies, MDPI, vol. 15(23), pages 1-24, November.
    15. Kofinas, P. & Doltsinis, S. & Dounis, A.I. & Vouros, G.A., 2017. "A reinforcement learning approach for MPPT control method of photovoltaic sources," Renewable Energy, Elsevier, vol. 108(C), pages 461-473.
    16. Mahmoud F. Elmorshedy & Umashankar Subramaniam & Jagabar Sathik Mohamed Ali & Dhafer Almakhles, 2023. "Energy Management of Hybrid DC Microgrid with Different Levels of DC Bus Voltage for Various Load Types," Energies, MDPI, vol. 16(14), pages 1-32, July.
    17. Efrain Mendez & Alexandro Ortiz & Pedro Ponce & Israel Macias & David Balderas & Arturo Molina, 2020. "Improved MPPT Algorithm for Photovoltaic Systems Based on the Earthquake Optimization Algorithm," Energies, MDPI, vol. 13(12), pages 1-24, June.
    18. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    19. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    20. Moacyr A. G. de Brito & Victor A. Prado & Edson A. Batista & Marcos G. Alves & Carlos A. Canesin, 2021. "Design Procedure to Convert a Maximum Power Point Tracking Algorithm into a Loop Control System," Energies, MDPI, vol. 14(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4797-:d:852548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.