IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1752-d521729.html
   My bibliography  Save this article

Effect of Permeability on Hydrate-Bearing Sediment Productivity and Stability in Ulleung Basin, East Sea, South Korea

Author

Listed:
  • Jung-Tae Kim

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea)

  • Chul-Whan Kang

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea)

  • Ah-Ram Kim

    (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology, Gyeonggi 10223, Korea)

  • Joo Yong Lee

    (The Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea)

  • Gye-Chun Cho

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea)

Abstract

Methane hydrate has attracted attention as a next-generation resource, and many researchers have conducted various studies to estimate its productivity. Numerical simulation is the optimal method for estimating methane gas productivity. Meanwhile, using a reasonable input parameter is essential for obtaining accurate numerical modeling results. Permeability is a geotechnical property that exhibits the greatest impact on productivity. The permeability of hydrate-bearing sediment varies based on the sediment pore structure and hydrate saturation. In this study, an empirical permeability model was derived from experimental data using soil specimens from the Ulleung Basin, and the model was applied in numerical analysis to evaluate the sediment gas productivity and ground stability. The gas productivity and stability of hydrate-bearing sediments were compared by applying a widely used permeability model and the proposed model to a numerical model. Additionally, a parametric study was performed to examine the effects of initial hydrate saturation on the sediment gas productivity and stability. There were significant differences in the productivity and stability analysis results according to the proposed permeability model. Therefore, it was found that for accurate numerical analysis, a regional permeability model should be applied.

Suggested Citation

  • Jung-Tae Kim & Chul-Whan Kang & Ah-Ram Kim & Joo Yong Lee & Gye-Chun Cho, 2021. "Effect of Permeability on Hydrate-Bearing Sediment Productivity and Stability in Ulleung Basin, East Sea, South Korea," Energies, MDPI, vol. 14(6), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1752-:d:521729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhixue Sun & Ying Xin & Qiang Sun & Ruolong Ma & Jianguang Zhang & Shuhuan Lv & Mingyu Cai & Haoxuan Wang, 2016. "Numerical Simulation of the Depressurization Process of a Natural Gas Hydrate Reservoir: An Attempt at Optimization of Field Operational Factors with Multiple Wells in a Real 3D Geological Model," Energies, MDPI, vol. 9(9), pages 1-20, September.
    2. Feng, Yongchang & Chen, Lin & Suzuki, Anna & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2019. "Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 166(C), pages 1106-1119.
    3. Jingsheng Lu & Dongliang Li & Yong He & Lingli Shi & Deqing Liang & Youming Xiong, 2019. "Experimental Study of Sand Production during Depressurization Exploitation in Hydrate Silty-Clay Sediments," Energies, MDPI, vol. 12(22), pages 1-14, November.
    4. Jung-Tae Kim & Ah-Ram Kim & Gye-Chun Cho & Chul-Whan Kang & Joo Yong Lee, 2019. "The Effects of Coupling Stiffness and Slippage of Interface Between the Wellbore and Unconsolidated Sediment on the Stability Analysis of the Wellbore Under Gas Hydrate Production," Energies, MDPI, vol. 12(21), pages 1-23, November.
    5. Kaihua Xue & Lei Yang & Jiafei Zhao & Yanghui Li & Yongchen Song & Shan Yao, 2019. "The Study of Flow Characteristics During the Decomposition Process in Hydrate-Bearing Porous Media Using Magnetic Resonance Imaging," Energies, MDPI, vol. 12(9), pages 1-17, May.
    6. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    7. Yi Wang & Jing-Chun Feng & Xiao-Sen Li & Yu Zhang & Gang Li, 2016. "Evaluation of Gas Production from Marine Hydrate Deposits at the GMGS2-Site 8, Pearl River Mouth Basin, South China Sea," Energies, MDPI, vol. 9(3), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taehun Lee & Hanam Son & Jooyong Lee & Taewoong Ahn & Nyeonkeon Kang, 2022. "Geomechanically Sustainable Gas Hydrate Production Using a 3D Geological Model in the Ulleung Basin of the Korean East Sea," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & BriceƱo Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung-Tae Kim & Ah-Ram Kim & Gye-Chun Cho & Chul-Whan Kang & Joo Yong Lee, 2019. "The Effects of Coupling Stiffness and Slippage of Interface Between the Wellbore and Unconsolidated Sediment on the Stability Analysis of the Wellbore Under Gas Hydrate Production," Energies, MDPI, vol. 12(21), pages 1-23, November.
    2. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    3. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    4. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    5. Zhixue Sun & Haoxuan Wang & Jun Yao & Chengwei Yang & Jianlong Kou & Kelvin Bongole & Ying Xin & Weina Li & Xuchen Zhu, 2017. "Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study," Energies, MDPI, vol. 11(1), pages 1-16, December.
    6. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    7. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Li, Xiao-Yan & Hu, Heng-Qi & Wang, Yi & Li, Xiao-Sen, 2022. "Experimental study of gas-liquid-sand production behaviors during gas hydrates dissociation with sand control screen," Energy, Elsevier, vol. 254(PB).
    9. Yang Tang & Peng Zhao & Xiaoyu Fang & Guorong Wang & Lin Zhong & Xushen Li, 2022. "Numerical Simulation on Erosion Wear Law of Pressure-Controlled Injection Tool in Solid Fluidization Exploitation of the Deep-Water Natural Gas Hydrate," Energies, MDPI, vol. 15(15), pages 1-17, July.
    10. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    11. Yu, Tao & Guan, Guoqing & Wang, Dayong & Song, Yongchen & Abudula, Abuliti, 2021. "Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site," Applied Energy, Elsevier, vol. 285(C).
    12. Ning, Fulong & Chen, Qiang & Sun, Jiaxin & Wu, Xiang & Cui, Guodong & Mao, Peixiao & Li, Yanlong & Liu, Tianle & Jiang, Guosheng & Wu, Nengyou, 2022. "Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations," Energy, Elsevier, vol. 254(PA).
    13. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    14. Bin Wang & Peng Huo & Tingting Luo & Zhen Fan & Fanglan Liu & Bo Xiao & Mingjun Yang & Jiafei Zhao & Yongchen Song, 2017. "Analysis of the Physical Properties of Hydrate Sediments Recovered from the Pearl River Mouth Basin in the South China Sea: Preliminary Investigation for Gas Hydrate Exploitation," Energies, MDPI, vol. 10(4), pages 1-16, April.
    15. Yuan, Yilong & Gong, Ye & Xu, Tianfu & Zhu, Huixing, 2023. "Multiphase flow and geomechanical responses of interbedded hydrate reservoirs during depressurization gas production for deepwater environment," Energy, Elsevier, vol. 262(PB).
    16. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Feng, Yongchang & Chen, Lin & Kanda, Yuki & Suzuki, Anna & Komiya, Atsuki & Maruyama, Shigenao, 2021. "Numerical analysis of gas production from large-scale methane hydrate sediments with fractures," Energy, Elsevier, vol. 236(C).
    18. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong, 2019. "3D visualization of fluid flow behaviors during methane hydrate extraction by hot water injection," Energy, Elsevier, vol. 188(C).
    19. Zhu, Huixing & Xu, Tianfu & Xin, Xin & Yuan, Yilong & Feng, Guanhong, 2022. "Numerical investigation of the three-phase layer production performance of an offshore natural gas hydrate trial production," Energy, Elsevier, vol. 257(C).
    20. Zhang, Qi & Wang, Yanfei, 2023. "Comparisons of different electrical heating assisted depressurization methods for developing the unconfined hydrate deposits in Shenhu area," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1752-:d:521729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.