IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8208-d696701.html
   My bibliography  Save this article

A Novel Health Prognosis Method for a Power System Based on a High-Order Hidden Semi-Markov Model

Author

Listed:
  • Qinming Liu

    (Department of Industrial Engineering, Business School, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China)

  • Daigao Li

    (Department of Industrial Engineering, Business School, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China)

  • Wenyi Liu

    (Department of Industrial Engineering, Business School, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China)

  • Tangbin Xia

    (SJTU-Fraunhofer Center, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Jiaxiang Li

    (Department of Industrial Engineering, Business School, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China)

Abstract

Power system health prognosis is a key process of condition-based maintenance. For the problem of large error in the residual lifetime prognosis of a power system, a novel residual lifetime prognosis model based on a high-order hidden semi-Markov model (HOHSMM) is proposed. First, HOHSMM is developed based on the hidden semi-Markov model (HSMM). An order reduction method and a composite node mechanism of HOHSMM based on permutation are proposed. The health state transition matrix and observation matrix are improved accordingly. The high-order model is transformed into the corresponding first-order model, and more node dependency information is stored in the parameter group to be estimated. Secondly, in order to estimate the parameters and optimize the structure of the proposed model, an intelligent optimization algorithm group is used instead of the expectation–maximization (EM) algorithm. Thus, the simplification of the topology of the high-order model by the intelligent optimization algorithm can be realized. Then, the state duration variables in the high-order model are defined and deduced. The prognosis method based on polynomial fitting is used to predict the residual lifetime of the power system when the prior distribution is unknown. Finally, the intelligent optimization algorithm is used to solve the proposed model, and experiments are performed based on a set of power system data sets to evaluate the performance of the proposed model. Compared with HSMM, the proposed model has better performance on the power system health prognosis problem and can get a relatively good solution in a short computation time.

Suggested Citation

  • Qinming Liu & Daigao Li & Wenyi Liu & Tangbin Xia & Jiaxiang Li, 2021. "A Novel Health Prognosis Method for a Power System Based on a High-Order Hidden Semi-Markov Model," Energies, MDPI, vol. 14(24), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8208-:d:696701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Dong-Mei & Lu, Jiejun & Ching, Wai-Ki & Siu, Tak-Kuen, 2017. "Discrete-time optimal asset allocation under Higher-Order Hidden Markov Model," Economic Modelling, Elsevier, vol. 66(C), pages 223-232.
    2. Dong, Ming & He, David, 2007. "Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis," European Journal of Operational Research, Elsevier, vol. 178(3), pages 858-878, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Hung Wang & Qigen Zhao & Rong Tian, 2023. "Short-Term Wind Power Prediction Based on a Hybrid Markov-Based PSO-BP Neural Network," Energies, MDPI, vol. 16(11), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    2. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    3. De Angelis, Luca & Dias, José G., 2014. "Mining categorical sequences from data using a hybrid clustering method," European Journal of Operational Research, Elsevier, vol. 234(3), pages 720-730.
    4. Zhao, Xiujie & Chen, Piao & Gaudoin, Olivier & Doyen, Laurent, 2021. "Accelerated degradation tests with inspection effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1099-1114.
    5. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    6. Ramin Moghaddass & Şeyda Ertekin, 2018. "Joint optimization of ordering and maintenance with condition monitoring data," Annals of Operations Research, Springer, vol. 263(1), pages 271-310, April.
    7. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    8. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    9. Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.
    10. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    11. Alaa H. Elwany & Nagi Z. Gebraeel & Lisa M. Maillart, 2011. "Structured Replacement Policies for Components with Complex Degradation Processes and Dedicated Sensors," Operations Research, INFORMS, vol. 59(3), pages 684-695, June.
    12. Frikha, Ahmed & Moalla, Hela, 2015. "Analytic hierarchy process for multi-sensor data fusion based on belief function theory," European Journal of Operational Research, Elsevier, vol. 241(1), pages 133-147.
    13. Lorton, A. & Fouladirad, M. & Grall, A., 2013. "A methodology for probabilistic model-based prognosis," European Journal of Operational Research, Elsevier, vol. 225(3), pages 443-454.
    14. Moghaddass, Ramin & Zuo, Ming J., 2014. "An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 92-104.
    15. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    16. Niu, Gang & Yang, Bo-Suk & Pecht, Michael, 2010. "Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 786-796.
    17. Zheng, Weimin & Huang, Xiaoting & Li, Yuan, 2017. "Understanding the tourist mobility using GPS: Where is the next place?," Tourism Management, Elsevier, vol. 59(C), pages 267-280.
    18. Nebojša Malešević & Dimitrije Marković & Gunter Kanitz & Marco Controzzi & Christian Cipriani & Christian Antfolk, 2018. "Vector Autoregressive Hierarchical Hidden Markov Models for Extracting Finger Movements Using Multichannel Surface EMG Signals," Complexity, Hindawi, vol. 2018, pages 1-12, February.
    19. Li, Zhanhang & Zhou, Jian & Nassif, Hani & Coit, David & Bae, Jinwoo, 2023. "Fusing physics-inferred information from stochastic model with machine learning approaches for degradation prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Sun, Rongzhuo & Shi, Licheng & Yang, Xilian & Wang, Yuzhang & Zhao, Qunfei, 2020. "A coupling diagnosis method of sensors faults in gas turbine control system," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8208-:d:696701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.