IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6927-d661863.html
   My bibliography  Save this article

Thermal Performance Improvement of Double-Pane Lightweight Steel Framed Walls Using Thermal Break Strips and Reflective Foils

Author

Listed:
  • Paulo Santos

    (ISISE, Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra, Portugal)

  • Telmo Ribeiro

    (ISISE, Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra, Portugal)

Abstract

The reduction of unwanted heat losses across the buildings’ envelope is very relevant to increase energy efficiency and achieve the decarbonization goals for the building stock. Two major heat transfer mechanisms across the building envelope are conduction and radiation, being this last one very important whenever there is an air cavity. In this work, the use of aerogel thermal break (TB) strips and aluminium reflective (AR) foils are experimentally assessed to evaluate the thermal performance improvement of double-pane lightweight steel-framed (LSF) walls. The face-to-face thermal resistances were measured under laboratory-controlled conditions for sixteen LSF wall configurations. The reliability of the measurements was double-checked making use of a homogeneous XPS single panel, as well as several non-homogeneous double-pane LSF walls. The measurements allowed us to conclude that the effectiveness of the AR foil is greater than the aerogel TB strips. In fact, using an AR foil inside the air cavity of double-pane LSF walls is much more effective than using aerogel TB strips along the steel flange, since only one AR foil (inner or outer) provides a similar thermal resistance increase than two aerogel TB strips, i.e., around +0.47 m 2 ∙K/W (+19%). However, the use of two AR foils, instead of a single one, is not effective, since the relative thermal resistance increase is only about +0.04 m 2 ∙K/W (+2%).

Suggested Citation

  • Paulo Santos & Telmo Ribeiro, 2021. "Thermal Performance Improvement of Double-Pane Lightweight Steel Framed Walls Using Thermal Break Strips and Reflective Foils," Energies, MDPI, vol. 14(21), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6927-:d:661863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paulo Santos & Keerthan Poologanathan, 2021. "The Importance of Stud Flanges Size and Shape on the Thermal Performance of Lightweight Steel Framed Walls," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    2. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    3. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2019. "Thermal Transmittance of Internal Partition and External Facade LSF Walls: A Parametric Study," Energies, MDPI, vol. 12(14), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo Santos & Diogo Mateus & Daniel Ferrandez & Amparo Verdu, 2022. "Numerical Simulation and Experimental Validation of Thermal Break Strips’ Improvement in Facade LSF Walls," Energies, MDPI, vol. 15(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo Santos & Paulo Lopes & David Abrantes, 2022. "Thermal Performance of Load-Bearing, Lightweight, Steel-Framed Partition Walls Using Thermal Break Strips: A Parametric Study," Energies, MDPI, vol. 15(24), pages 1-16, December.
    2. Victor Lohmann & Paulo Santos, 2020. "Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental and Numerical Assessments," Energies, MDPI, vol. 13(11), pages 1-25, May.
    3. Paulo Santos & Keerthan Poologanathan, 2021. "The Importance of Stud Flanges Size and Shape on the Thermal Performance of Lightweight Steel Framed Walls," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    4. Paulo Santos & Diogo Mateus & Daniel Ferrandez & Amparo Verdu, 2022. "Numerical Simulation and Experimental Validation of Thermal Break Strips’ Improvement in Facade LSF Walls," Energies, MDPI, vol. 15(21), pages 1-18, November.
    5. Paulo Santos & Paulo Lopes & David Abrantes, 2023. "Thermal Performance of Lightweight Steel Framed Facade Walls Using Thermal Break Strips and ETICS: A Parametric Study," Energies, MDPI, vol. 16(4), pages 1-16, February.
    6. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2020. "Analytical Methods to Estimate the Thermal Transmittance of LSF Walls: Calculation Procedures Review and Accuracy Comparison," Energies, MDPI, vol. 13(4), pages 1-27, February.
    7. Przemysław Miąsik & Joanna Krasoń, 2021. "Thermal Efficiency of Trombe Wall in the South Facade of a Frame Building," Energies, MDPI, vol. 14(3), pages 1-23, January.
    8. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Domagoj Tkalčić & Bojan Milovanović & Mergim Gaši & Marija Jelčić Rukavina & Ivana Banjad Pečur, 2023. "Optimization of Thermal Bridges Effect of Composite Lightweight Panels with Integrated Steel Load-Bearing Structure," Energies, MDPI, vol. 16(18), pages 1-24, September.
    10. Natalia Cid & Ana Ogando & M. A. Gómez, 2017. "Acquisition System Verification for Energy Efficiency Analysis of Building Materials," Energies, MDPI, vol. 10(9), pages 1-12, August.
    11. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2019. "Thermal Transmittance of Internal Partition and External Facade LSF Walls: A Parametric Study," Energies, MDPI, vol. 12(14), pages 1-20, July.
    12. Kyriakidis, Andreas & Michael, Aimilios & Illampas, Rogiros & Charmpis, Dimos C. & Ioannou, Ioannis, 2018. "Thermal performance and embodied energy of standard and retrofitted wall systems encountered in Southern Europe," Energy, Elsevier, vol. 161(C), pages 1016-1027.
    13. Ornella Iuorio & Andrew Wallace & Kate Simpson, 2019. "Prefabs in the North of England: Technological, Environmental and Social Innovations," Sustainability, MDPI, vol. 11(14), pages 1-14, July.
    14. Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Mihaiela Iliescu & Maria-Magdalena Roşu & Dragoș Căpăţină, 2019. "Optimization of the Induction Process on Light Gauge Steel Profiles Used in Metallic Framed Sustainable Eco-Constructions," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    16. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Mingqian Guo & Yue Wu & Xinran Miao, 2023. "Thermal Bridges Monitoring and Energy Optimization of Rural Residences in China’s Cold Regions," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    18. Cristino, T.M. & Lotufo, F.A. & Delinchant, B. & Wurtz, F. & Faria Neto, A., 2021. "A comprehensive review of obstacles and drivers to building energy-saving technologies and their association with research themes, types of buildings, and geographic regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Ioannis Atsonios & Ioannis Mandilaras & Maria Founti, 2019. "Thermal Assessment of a Novel Drywall System Insulated with VIPs," Energies, MDPI, vol. 12(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6927-:d:661863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.