IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4477-d600645.html
   My bibliography  Save this article

Review on Braking Energy Management in Electric Vehicles

Author

Listed:
  • Valery Vodovozov

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Zoja Raud

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Eduard Petlenkov

    (Department of Computer Systems, Tallinn University of Technology, 19086 Tallinn, Estonia)

Abstract

The adoption of electric vehicles promises numerous benefits for modern society. At the same time, there remain significant hurdles to their wide distribution, primarily related to battery-based energy sources. This review concerns the systematization of knowledge in one of the areas of the electric vehicle control, namely, the energy management issues when using braking controllers. The braking process optimization is summarized from two aspects. First, the advantageous solutions are presented that were identified in the field of gradual and urgent braking. Second, several findings discovered in adjacent fields of automation are debated as prospects for their possible application in braking control. Following the specific classification of braking methods, a generalized braking system composition is offered, and all publications are evaluated primarily in terms of their energy recovery abilities as a global target. Then, conventional and intelligent classes of braking controllers are compared. In the first category, classic PID, threshold, and sliding-mode controllers are reviewed in terms of their energy management restrictions. The second group relates to the issues of the tire friction-slip identification and braking torque allocation between the hydraulic and electrical brakes. From this perspective, several intelligent systems are analyzed in detail, especially fuzzy logic, neural network, and their numerous associations.

Suggested Citation

  • Valery Vodovozov & Zoja Raud & Eduard Petlenkov, 2021. "Review on Braking Energy Management in Electric Vehicles," Energies, MDPI, vol. 14(15), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4477-:d:600645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shu-zhi Gao & Jing Yang & Jie-sheng Wang, 2014. "D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-13, April.
    2. Jakov Topić & Branimir Škugor & Joško Deur, 2019. "Neural Network-Based Modeling of Electric Vehicle Energy Demand and All Electric Range," Energies, MDPI, vol. 12(7), pages 1-20, April.
    3. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    4. Guoqing Xu & Weimin Li & Kun Xu & Zhibin Song, 2011. "An Intelligent Regenerative Braking Strategy for Electric Vehicles," Energies, MDPI, vol. 4(9), pages 1-17, September.
    5. Boyi Xiao & Huazhong Lu & Hailin Wang & Jiageng Ruan & Nong Zhang, 2017. "Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis," Energies, MDPI, vol. 10(11), pages 1-19, November.
    6. Valery Vodovozov & Andrei Aksjonov & Eduard Petlenkov & Zoja Raud, 2021. "Neural Network-Based Model Reference Control of Braking Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-22, April.
    7. Jingang Guo & Xiaoping Jian & Guangyu Lin, 2014. "Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller," Energies, MDPI, vol. 7(10), pages 1-18, October.
    8. Kanghyun Nam & Yoichi Hori & Choonyoung Lee, 2015. "Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle," Energies, MDPI, vol. 8(7), pages 1-21, July.
    9. He, Hongwen & Wang, Chen & Jia, Hui & Cui, Xing, 2020. "An intelligent braking system composed single-pedal and multi-objective optimization neural network braking control strategies for electric vehicle," Applied Energy, Elsevier, vol. 259(C).
    10. Lee, Henry & Clark, Alex, 2018. "Charging the Future: Challenges and Opportunities for Electric Vehicle Adoption," Working Paper Series rwp18-026, Harvard University, John F. Kennedy School of Government.
    11. Yang Yang & Chang Luo & Pengxi Li, 2017. "Regenerative Braking Control Strategy of Electric-Hydraulic Hybrid (EHH) Vehicle," Energies, MDPI, vol. 10(7), pages 1-18, July.
    12. Sabrine Slama & Ayachi Errachdi & Mohamed Benrejeb, 2019. "Neural Adaptive PID and Neural Indirect Adaptive Control Switch Controller for Nonlinear MIMO Systems," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianfranco Rizzo & Francesco Antonio Tiano & Valerio Mariani & Matteo Marino, 2021. "Optimal Modulation of Regenerative Braking in Through-The-Road Hybridized Vehicles," Energies, MDPI, vol. 14(20), pages 1-15, October.
    2. Giulia Sandrini & Daniel Chindamo & Marco Gadola, 2022. "Regenerative Braking Logic That Maximizes Energy Recovery Ensuring the Vehicle Stability," Energies, MDPI, vol. 15(16), pages 1-43, August.
    3. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    4. Agnieszka Dudziak & Jacek Caban & Ondrej Stopka & Monika Stoma & Marie Sejkorová & Mária Stopková, 2023. "Vehicle Market Analysis of Drivers’ Preferences in Terms of the Propulsion Systems: The Czech Case Study," Energies, MDPI, vol. 16(5), pages 1-20, March.
    5. Khaled Itani & Alexandre De Bernardinis, 2022. "Electrothermal Multicriteria Comparative Analysis of Two Competitive Powertrains Applied to a Two Front Wheel Driven Electric Vehicle during Extreme Regenerative Braking Operations," Energies, MDPI, vol. 15(22), pages 1-27, November.
    6. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    7. Deping Wang & Changyang Guan & Junnian Wang & Haisheng Wang & Zhenhao Zhang & Dachang Guo & Fang Yang, 2023. "Review of Energy-Saving Technologies for Electric Vehicles, from the Perspective of Driving Energy Management," Sustainability, MDPI, vol. 15(9), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valery Vodovozov & Andrei Aksjonov & Eduard Petlenkov & Zoja Raud, 2021. "Neural Network-Based Model Reference Control of Braking Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-22, April.
    2. Changran He & Guoye Wang & Zhangpeng Gong & Zhichao Xing & Dongxin Xu, 2018. "A Control Algorithm for the Novel Regenerative–Mechanical Coupled Brake System with by-Wire Based on Multidisciplinary Design Optimization for an Electric Vehicle," Energies, MDPI, vol. 11(9), pages 1-18, September.
    3. Emilia M. Szumska & Rafał Jurecki, 2022. "The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions," Energies, MDPI, vol. 15(24), pages 1-16, December.
    4. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    5. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    6. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    7. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    8. Timo Busch & Michael L. Barnett & Roger Leonard Burritt & Benjamin W. Cashore & R. Edward Freeman & Irene Henriques & Bryan W. Husted & Rajat Panwar & Jonatan Pinkse & Stefan Schaltegger & Jeff York, 2024. "Moving beyond “the” business case: How to make corporate sustainability work," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 776-787, February.
    9. Jose A. Ruz-Hernandez & Larbi Djilali & Mario Antonio Ruz Canul & Moussa Boukhnifer & Edgar N. Sanchez, 2022. "Neural Inverse Optimal Control of a Regenerative Braking System for Electric Vehicles," Energies, MDPI, vol. 15(23), pages 1-19, November.
    10. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Peter Girovský & Jaroslava Žilková & Ján Kaňuch, 2020. "Optimization of Vehicle Braking Distance Using a Fuzzy Controller," Energies, MDPI, vol. 13(11), pages 1-15, June.
    12. Jurva, Risto & Matinmikko-Blue, Marja & Outila, Tarja & Merisalo, Virve, 2021. "Evolution paths of stakeholder-oriented smart transportation systems based on 5G," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 243151, International Telecommunications Society (ITS).
    13. Wasbari, F. & Bakar, R.A. & Gan, L.M. & Tahir, M.M. & Yusof, A.A., 2017. "A review of compressed-air hybrid technology in vehicle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 935-953.
    14. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    15. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    16. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    17. Shimi Sudha Letha & Math H. J. Bollen & Tatiano Busatto & Angela Espin Delgado & Enock Mulenga & Hamed Bakhtiari & Jil Sutaria & Kazi Main Uddin Ahmed & Naser Nakhodchi & Selçuk Sakar & Vineetha Ravin, 2023. "Power Quality Issues of Electro-Mobility on Distribution Network—An Overview," Energies, MDPI, vol. 16(13), pages 1-21, June.
    18. Xinyu Zhao & Lu Xiong & Guirong Zhuo & Wei Tian & Jing Li & Qiang Shu & Xuanbai Zhao & Guodong Xu, 2024. "A Review of One-Box Electro-Hydraulic Braking System: Architecture, Control, and Application," Sustainability, MDPI, vol. 16(3), pages 1-31, January.
    19. Maria Giuffrida & Riccardo Mangiaracina, 2020. "Green Practices for Global Supply Chains in Diverse Industrial, Geographical, and Technological Settings: A Literature Review and Research Agenda," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    20. Duo Zhang & Guohai Liu & Wenxiang Zhao & Penghu Miao & Yan Jiang & Huawei Zhou, 2014. "A Neural Network Combined Inverse Controller for a Two-Rear-Wheel Independently Driven Electric Vehicle," Energies, MDPI, vol. 7(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4477-:d:600645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.