IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1914-d345322.html
   My bibliography  Save this article

Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems

Author

Listed:
  • Roland Ryndzionek

    (Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Łukasz Sienkiewicz

    (Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

Abstract

This paper presents an overview of the DC link development and evolution dedicated to HVDC structure for connecting offshore wind power plants to onshore power systems. The growing demand for the green energy has forced investors in power industry to look for resources further out at sea. Hence, the development of power electronics and industrial engineering has enabled offshore wind farms to be situated further from the shore and in deeper waters. However, their development will require, among other technologies, DC-DC conversion systems. The advantages of HVDC over HVAC technology in relation to transmission distance are given. The different HVDC configurations and topologies of HVDC converters are elucidated. In this context, the HVDC grids are a promising alternative for the expansion of the existing AC grid.

Suggested Citation

  • Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1914-:d:345322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Dambone Sessa & Antonio Chiarelli & Roberto Benato, 2019. "Availability Analysis of HVDC-VSC Systems: A Review," Energies, MDPI, vol. 12(14), pages 1-22, July.
    2. Morris Brenna & Federica Foiadelli & Michela Longo & Dario Zaninelli, 2017. "Improvement of Wind Energy Production through HVDC Systems," Energies, MDPI, vol. 10(2), pages 1-25, January.
    3. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    4. Sheng Jie Shao & Vassilios G. Agelidis, 2010. "Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids," Energies, MDPI, vol. 3(6), pages 1-17, June.
    5. Sungchul Hwang & Sungyoon Song & Gilsoo Jang & Minhan Yoon, 2019. "An Operation Strategy of the Hybrid Multi-Terminal HVDC for Contingency," Energies, MDPI, vol. 12(11), pages 1-22, May.
    6. Xinyin Zhang & Zaijun Wu & Minqiang Hu & Xianyun Li & Ganyun Lv, 2015. "Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through," Energies, MDPI, vol. 8(7), pages 1-19, July.
    7. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    8. Piotr Dworakowski & Andrzej Wilk & Michal Michna & Bruno Lefebvre & Fabien Sixdenier & Michel Mermet-Guyennet, 2020. "Effective Permeability of Multi Air Gap Ferrite Core 3-Phase Medium Frequency Transformer in Isolated DC-DC Converters," Energies, MDPI, vol. 13(6), pages 1-21, March.
    9. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sophie Coffey & Victor Timmers & Rui Li & Guanglu Wu & Agustí Egea-Àlvarez, 2021. "Review of MVDC Applications, Technologies, and Future Prospects," Energies, MDPI, vol. 14(24), pages 1-36, December.
    2. Danilo Herrera & Thiago Tricarico & Diego Oliveira & Mauricio Aredes & Eduardo Galván-Díez & Juan M. Carrasco, 2022. "Advanced Local Grid Control System for Offshore Wind Turbines with the Diode-Based Rectifier HVDC Link Implemented in a True Scalable Test Bench," Energies, MDPI, vol. 15(16), pages 1-21, August.
    3. Wojciech Sleszynski & Artur Cichowski & Piotr Mysiak, 2020. "Suppression of Supply Current Harmonics of 18-Pulse Diode Rectifier by Series Active Power Filter with LC Coupling," Energies, MDPI, vol. 13(22), pages 1-12, November.
    4. Hamoud Alafnan & Xiaoze Pei & Diaa-Eldin A. Mansour & Moanis Khedr & Wenjuan Song & Ibrahim Alsaleh & Abdullah Albaker & Mansoor Alturki & Xianwu Zeng, 2023. "Impact of Copper Stabilizer Thickness on SFCL Performance with PV-Based DC Systems Using a Multilayer Thermoelectric Model," Sustainability, MDPI, vol. 15(9), pages 1-15, April.
    5. Cleiton M. Freitas & Edson H. Watanabe & Luís F. C. Monteiro, 2023. "d-q Small-Signal Model for Grid-Forming MMC and Its Application in Electromagnetic-Transient Simulations," Energies, MDPI, vol. 16(5), pages 1-22, February.
    6. Neville R. Watson & Jeremy D. Watson, 2020. "An Overview of HVDC Technology," Energies, MDPI, vol. 13(17), pages 1-35, August.
    7. Nezha Mejjad & Marzia Rovere, 2021. "Understanding the Impacts of Blue Economy Growth on Deep-Sea Ecosystem Services," Sustainability, MDPI, vol. 13(22), pages 1-26, November.
    8. Cullinane, M. & Judge, F. & O'Shea, M. & Thandayutham, K. & Murphy, J., 2022. "Subsea superconductors: The future of offshore renewable energy transmission?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Huanhuan Luo & Weichun Ge & Jingzhuo Sun & Quanyuan Jiang & Yuzhong Gong, 2021. "Using Thermal Energy Storage to Relieve Wind Generation Curtailment in an Island Microgrid," Energies, MDPI, vol. 14(10), pages 1-15, May.
    10. Mohsin Ali Koondhar & Ghulam Sarwar Kaloi & Abdul Sattar Saand & Sadullah Chandio & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi & Ragab Abdelaziz El-Sehiemy, 2023. "Critical Technical Issues with a Voltage-Source-Converter-Based High Voltage Direct Current Transmission System for the Onshore Integration of Offshore Wind Farms," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    11. Juan-Manuel Roldan-Fernandez & Javier Serrano-Gonzalez & Francisco Gonzalez-Longatt & Manuel Burgos-Payan, 2021. "Impact of Spanish Offshore Wind Generation in the Iberian Electricity Market: Potential Savings and Policy Implications," Energies, MDPI, vol. 14(15), pages 1-17, July.
    12. Heng Nian & Xiao Jin, 2021. "Modeling and Analysis of Transient Reactive Power Characteristics of DFIG Considering Crowbar Circuit under Ultra HVDC Commutation Failure," Energies, MDPI, vol. 14(10), pages 1-17, May.
    13. Xingliang Liu & Guiyun Tian & Yu Chen & Haoze Luo & Jian Zhang & Wuhua Li, 2020. "Non-Contact Degradation Evaluation for IGBT Modules Using Eddy Current Pulsed Thermography Approach," Energies, MDPI, vol. 13(10), pages 1-14, May.
    14. Paweł Kroplewski & Marcin Morawiec & Andrzej Jąderko & Charles Odeh, 2021. "Simulation Studies of Control Systems for Doubly Fed Induction Generator Supplied by the Current Source Converter," Energies, MDPI, vol. 14(5), pages 1-16, March.
    15. Saran Ganesh & Arcadio Perilla & Jose Rueda Torres & Peter Palensky & Aleksandra Lekić & Mart van der Meijden, 2021. "Generic EMT Model for Real-Time Simulation of Large Disturbances in 2 GW Offshore HVAC-HVDC Renewable Energy Hubs," Energies, MDPI, vol. 14(3), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsin Ali Koondhar & Ghulam Sarwar Kaloi & Abdul Sattar Saand & Sadullah Chandio & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi & Ragab Abdelaziz El-Sehiemy, 2023. "Critical Technical Issues with a Voltage-Source-Converter-Based High Voltage Direct Current Transmission System for the Onshore Integration of Offshore Wind Farms," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    2. Haipeng Xie & Zhaohong Bie & Yanling Lin & Chao Zheng, 2017. "A Hybrid Reliability Evaluation Method for Meshed VSC-HVDC Grids," Energies, MDPI, vol. 10(7), pages 1-17, July.
    3. Nansheng Pang & Wenjing Guo, 2019. "Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    4. Ardelean, Mircea & Minnebo, Philip, 2023. "The suitability of seas and shores for building submarine power interconnections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Li, Bei & Li, Jiangchen, 2021. "Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters," Applied Energy, Elsevier, vol. 304(C).
    6. Itiki, Rodney & Manjrekar, Madhav & Di Santo, Silvio Giuseppe & Machado, Luis Fernando M., 2020. "Technical feasibility of Japan-Taiwan-Philippines HVdc interconnector to the Asia Pacific Super Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Tarek Abedin & M. Shahadat Hossain Lipu & Mahammad A. Hannan & Pin Jern Ker & Safwan A. Rahman & Chong Tak Yaw & Sieh K. Tiong & Kashem M. Muttaqi, 2021. "Dynamic Modeling of HVDC for Power System Stability Assessment: A Review, Issues, and Recommendations," Energies, MDPI, vol. 14(16), pages 1-25, August.
    8. Hyuk-Il Kwon & Yun-Sung Cho & Sang-Min Choi, 2020. "A Study on Optimal Power System Reinforcement Measures Following Renewable Energy Expansion," Energies, MDPI, vol. 13(22), pages 1-34, November.
    9. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    10. David Firnando Silalahi & Andrew Blakers & Cheng Cheng, 2023. "100% Renewable Electricity in Indonesia," Energies, MDPI, vol. 17(1), pages 1-22, December.
    11. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    13. Liuming Jing & Dae-Hee Son & Sang-Hee Kang & Soon-Ryul Nam, 2017. "Unsynchronized Phasor-Based Protection Method for Single Line-to-Ground Faults in an Ungrounded Offshore Wind Farm with Fully-Rated Converters-Based Wind Turbines," Energies, MDPI, vol. 10(4), pages 1-15, April.
    14. Jaesik Kang, 2022. "Comprehensive Analysis of Transient Overvoltage Phenomena for Metal-Oxide Varistor Surge Arrester in LCC-HVDC Transmission System with Special Protection Scheme," Energies, MDPI, vol. 15(19), pages 1-17, September.
    15. Xiuqiang He & Hua Geng & Geng Yang & Xin Zou, 2018. "Coordinated Control for Large-Scale Wind Farms with LCC-HVDC Integration," Energies, MDPI, vol. 11(9), pages 1-19, August.
    16. Phu Cong Nguyen & Quoc Dung Phan & Dinh Tuyen Nguyen, 2022. "A New Decentralized Space Vector PWM Method for Multilevel Single-Phase Full Bridge Converters," Energies, MDPI, vol. 15(3), pages 1-25, January.
    17. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    18. Gaurav Kumar Roy & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "A Two-Step State Estimation Algorithm for Hybrid AC-DC Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-21, April.
    19. Corentin Darbas & Jean-Christophe Olivier & Nicolas Ginot & Frédéric Poitiers & Christophe Batard, 2021. "Cascaded Smart Gate Drivers for Modular Multilevel Converters Control: A Decentralized Voltage Balancing Algorithm," Energies, MDPI, vol. 14(12), pages 1-27, June.
    20. Yingying Jiang & Xiaolin Chen & Sui Peng & Xiao Du & Dan Xu & Junjie Tang & Wenyuan Li, 2019. "Study on Emergency Load Shedding of Hybrid AC/DC Receiving-End Power Grid with Stochastic, Static Characteristics-Dependent Load Model," Energies, MDPI, vol. 12(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1914-:d:345322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.