IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1017-d324732.html
   My bibliography  Save this article

The Effect of CO 2 Partial Pressure on CH 4 Recovery in CH 4 -CO 2 Swap with Simulated IGCC Syngas

Author

Listed:
  • Ya-Long Ding

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510641, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510641, China
    College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China)

  • Hua-Qin Wang

    (College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China)

  • Chun-Gang Xu

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510641, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510641, China
    CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Xiao-Sen Li

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510641, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510641, China
    CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract

To investigate the influence of CO 2 partial pressure on efficiency of CH 4 -CO 2 swap from natural gas hydrates (NGHs), the replacement of CH 4 from natural gas hydrate (NGH) is carried out with simulated Integrated Gasification Combined Cycle (IGCC) syngas under different pressures, and the gas chromatography (GC), in-situ Raman, and powder X-ray diffraction (PXRD) are employed to analyze the hydrate compositions and hydrate structures. The results show that with the P-T (pressure and temperature) condition shifting from that above the hydrate equilibrium curve of IGCC syngas to that below the hydrate equilibrium curve of IGCC syngas, the rate of CH 4 recovery drastically rises from 32% to 71%. The presence of water can be clearly observed when P-T condition is above the hydrate equilibrium curve of IGCC syngas; however the presence of water only occurs at the interface between gas phase and hydrate phase. No H 2 is found to present in the final hydrate phase at the end of process of CH 4 -CO 2 swap with IGCC syngas.

Suggested Citation

  • Ya-Long Ding & Hua-Qin Wang & Chun-Gang Xu & Xiao-Sen Li, 2020. "The Effect of CO 2 Partial Pressure on CH 4 Recovery in CH 4 -CO 2 Swap with Simulated IGCC Syngas," Energies, MDPI, vol. 13(5), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1017-:d:324732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
    2. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Aoxing & Guan, Dawei & Jiang, Zhibo & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Sensible heat aided gas production from gas hydrate with an underlying water-rich shallow gas layer," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    2. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yanjiang Yu & Kaixiang Shen & Haifeng Zhao, 2024. "Experimental Investigation of Fracture Propagation in Clayey Silt Hydrate-Bearing Sediments," Energies, MDPI, vol. 17(2), pages 1-16, January.
    4. Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    6. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    7. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    8. Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
    9. Gu, Yuhang & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Cao, Xinxin & Liu, Tianle & Qin, Shunbo & Zhang, Ling & Jiang, Guosheng, 2023. "Enhancing gas recovery from natural gas hydrate reservoirs in the eastern Nankai Trough: Deep depressurization and underburden sealing," Energy, Elsevier, vol. 262(PB).
    10. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    11. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    12. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    13. Sun, Yi-Fei & Zhong, Jin-Rong & Li, Rui & Zhu, Tao & Cao, Xin-Yi & Chen, Guang-Jin & Wang, Xiao-Hui & Yang, Lan-Ying & Sun, Chang-Yu, 2018. "Natural gas hydrate exploitation by CO2/H2 continuous Injection-Production mode," Applied Energy, Elsevier, vol. 226(C), pages 10-21.
    14. Thakre, Niraj & Jana, Amiya K., 2017. "Modeling phase equilibrium with a modified Wong-Sandler mixing rule for natural gas hydrates: Experimental validation," Applied Energy, Elsevier, vol. 205(C), pages 749-760.
    15. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Ouyang, Qian & Pandey, Jyoti Shanker & von Solms, Nicolas, 2022. "Insights into multistep depressurization of CH4/CO2 mixed hydrates in unconsolidated sediments," Energy, Elsevier, vol. 260(C).
    17. Zhang, Qi & Wang, Yanfei, 2023. "Comparisons of different electrical heating assisted depressurization methods for developing the unconfined hydrate deposits in Shenhu area," Energy, Elsevier, vol. 269(C).
    18. Chu, Hongyang & Zhang, Jingxuan & Zhu, Weiyao & Kong, Debin & Ma, Tianbi & Gao, Yubao & John Lee, W., 2023. "A quick and reliable production prediction approach for multilateral wells in natural gas hydrate: Methodology and case study," Energy, Elsevier, vol. 277(C).
    19. Tsypkin, G.G., 2021. "Analytical study of CO2–CH4 exchange in hydrate at high rates of carbon dioxide injection into a reservoir saturated with methane hydrate and gaseous methane," Energy, Elsevier, vol. 233(C).
    20. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1017-:d:324732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.