IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6157-d449874.html
   My bibliography  Save this article

Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System

Author

Listed:
  • Chukwuma Ogbonnaya

    (Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M60 1QD, UK
    Faculty of Engineering and Technology, Alex Ekwueme Federal University, Ndufu Alike Ikwo, Abakaliki PMB 1010, Nigeria)

  • Chamil Abeykoon

    (Department of Materials, Aerospace Research Institute, The University of Manchester, Manchester M13 9PL, UK)

  • Adel Nasser

    (Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M60 1QD, UK)

  • Ali Turan

    (Independent Researcher, Manchester M22 4ES, Lancashire, UK)

Abstract

Thermophotovoltaic (TPV) systems generate electricity without the limitations of radiation intermittency, which is the case in solar photovoltaic systems. As energy demands steadily increase, there is a need to improve the conversion dynamics of TPV systems. Consequently, this study proposes a novel radiation-thermodynamic model to gain insights into the thermodynamics of TPV systems. After validating the model, parametric studies were performed to study the dependence of power generation attributes on the radiator and PV cell temperatures. Our results indicated that a silicon-based photovoltaic (PV) module could produce a power density output, thermal losses, and maximum voltage of 115.68 W cm −2 , 18.14 W cm −2 , and 36 V, respectively, at a radiator and PV cell temperature of 1800 K and 300 K. Power density output increased when the radiator temperature increased; however, the open circuit voltage degraded when the temperature of the TPV cells increased. Overall, for an 80 W PV module, there was a potential for improving the power generation capacity by 45% if the TPV system operated at a radiator and PV cell temperature of 1800 K and 300 K, respectively. The thermal efficiency of the TPV system varied with the temperature of the PV cell and radiator.

Suggested Citation

  • Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan, 2020. "Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System," Energies, MDPI, vol. 13(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6157-:d:449874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.
    2. Bitnar, Bernd & Durisch, Wilhelm & Holzner, Reto, 2013. "Thermophotovoltaics on the move to applications," Applied Energy, Elsevier, vol. 105(C), pages 430-438.
    3. Fekadu Tolessa Maremi & Namkyu Lee & Geehong Choi & Taehwan Kim & Hyung Hee Cho, 2018. "Design of Multilayer Ring Emitter Based on Metamaterial for Thermophotovoltaic Applications," Energies, MDPI, vol. 11(9), pages 1-9, August.
    4. Ferrari, Claudio & Melino, Francesco & Pinelli, Michele & Spina, Pier Ruggero, 2014. "Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences," Applied Energy, Elsevier, vol. 113(C), pages 1717-1730.
    5. Coutts, T. J., 1999. "A review of progress in thermophotovoltaic generation of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 3(2-3), pages 77-184, June.
    6. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    7. Durisch, W. & Bitnar, B. & Mayor, J. -C. & von Roth, Fritz & Sigg, H. & Tschudi, H. R. & Palfinger, G., 2003. "Small self-powered grid-connected thermophotovoltaic prototype system," Applied Energy, Elsevier, vol. 74(1-2), pages 149-157, January.
    8. Butcher, T.A. & Hammonds, J.S. & Horne, E. & Kamath, B. & Carpenter, J. & Woods, D.R., 2011. "Heat transfer and thermophotovoltaic power generation in oil-fired heating systems," Applied Energy, Elsevier, vol. 88(5), pages 1543-1548, May.
    9. Gentillon, Philippe & Singh, Siddharth & Lakshman, Suhas & Zhang, Zhaolun & Paduthol, Appu & Ekins-Daukes, N.J. & Chan, Qing N. & Taylor, Robert A., 2019. "A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission," Applied Energy, Elsevier, vol. 254(C).
    10. Jiang, Joe-Air & Wang, Jen-Cheng & Kuo, Kun-Chang & Su, Yu-Li & Shieh, Jyh-Cherng & Chou, Jui-Jen, 2012. "Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions," Energy, Elsevier, vol. 44(1), pages 292-301.
    11. Hussain, C.M. Iftekhar & Duffy, Aidan & Norton, Brian, 2020. "Thermophotovoltaic systems for achieving high-solar-fraction hybrid solar-biomass power generation," Applied Energy, Elsevier, vol. 259(C).
    12. Nusrat Chowdhury & Chowdhury Akram Hossain & Michela Longo & Wahiba Yaïci, 2018. "Optimization of Solar Energy System for the Electric Vehicle at University Campus in Dhaka, Bangladesh," Energies, MDPI, vol. 11(9), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan, 2021. "A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables," Mathematics, MDPI, vol. 9(9), pages 1-13, April.
    2. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan & Cyril Sunday Ume, 2021. "Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review," Energies, MDPI, vol. 14(20), pages 1-33, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    2. Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
    3. Qiu, K. & Hayden, A.C.S., 2014. "Implementation of a TPV integrated boiler for micro-CHP in residential buildings," Applied Energy, Elsevier, vol. 134(C), pages 143-149.
    4. Hussain, C.M. Iftekhar & Duffy, Aidan & Norton, Brian, 2020. "Thermophotovoltaic systems for achieving high-solar-fraction hybrid solar-biomass power generation," Applied Energy, Elsevier, vol. 259(C).
    5. Qiao, Guofu & Sun, Guodong & Li, Hui & Ou, Jinping, 2014. "Heterogeneous tiny energy: An appealing opportunity to power wireless sensor motes in a corrosive environment," Applied Energy, Elsevier, vol. 131(C), pages 87-96.
    6. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    7. Liu, Z. & Qiu, K., 2017. "A TPV power system consisting of a composite radiant burner and combined cells," Energy, Elsevier, vol. 141(C), pages 892-897.
    8. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.
    9. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Bitnar, Bernd & Durisch, Wilhelm & Holzner, Reto, 2013. "Thermophotovoltaics on the move to applications," Applied Energy, Elsevier, vol. 105(C), pages 430-438.
    11. Shan, Shiquan & Tian, Jialu & Chen, Binghong & Zhang, Yanwei & Zhou, Zhijun, 2023. "Theoretical and technical analysis of the photo-thermal energy cascade conversion for fuel with high-temperature combustion," Energy, Elsevier, vol. 263(PD).
    12. Tian Zhou & Zhiqiang Sun & Saiwei Li & Huawei Liu & Danqing Yi, 2016. "Design and Optimization of Thermophotovoltaic System Cavity with Mirrors," Energies, MDPI, vol. 9(9), pages 1-11, September.
    13. Habibi, Mohammad & Cui, Longji, 2023. "Modelling and performance analysis of a novel thermophotovoltaic system with enhanced radiative heat transfer for combined heat and power generation," Applied Energy, Elsevier, vol. 343(C).
    14. Wijewardane, S. & Goswami, Yogi, 2014. "Extended exergy concept to facilitate designing and optimization of frequency-dependent direct energy conversion systems," Applied Energy, Elsevier, vol. 134(C), pages 204-214.
    15. Chou, S.K. & Yang, W.M. & Li, J. & Li, Z.W., 2010. "Porous media combustion for micro thermophotovoltaic system applications," Applied Energy, Elsevier, vol. 87(9), pages 2862-2867, September.
    16. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Xu, Hongpeng & Li, Zhenwei & Tay, Kunlin & Zeng, Guang & Yu, Wenbin, 2020. "Investigation on premixed H2/C3H8/air combustion in porous medium combustor for the micro thermophotovoltaic application," Applied Energy, Elsevier, vol. 260(C).
    17. Praveen Cheekatamarla & Stephen Kowalski & Ahmad Abu-Heiba & Timothy LaClair & Kyle Gluesenkamp, 2022. "Modeling and Analysis of a Thermophotovoltaic Integrated Self-Powered Furnace," Energies, MDPI, vol. 15(19), pages 1-16, September.
    18. Gentillon, Philippe & Singh, Siddharth & Lakshman, Suhas & Zhang, Zhaolun & Paduthol, Appu & Ekins-Daukes, N.J. & Chan, Qing N. & Taylor, Robert A., 2019. "A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission," Applied Energy, Elsevier, vol. 254(C).
    19. Meng, Caifeng & Liu, Yunpeng & Xu, Zhiheng & Wang, Hongyu & Tang, Xiaobin, 2022. "Selective emitter with core–shell nanosphere structure for thermophotovoltaic systems," Energy, Elsevier, vol. 239(PA).
    20. Attolini, G. & Bosi, M. & Ferrari, C. & Melino, F., 2013. "Design guidelines for thermo-photo-voltaic generator: The critical role of the emitter size," Applied Energy, Elsevier, vol. 103(C), pages 618-626.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6157-:d:449874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.