IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5598-d435041.html
   My bibliography  Save this article

The Potential of Wobble Plate Opposed Piston Axial Engines for Increased Efficiency

Author

Listed:
  • Paweł Mazuro

    (Department of Aircraft Engines, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland)

  • Barbara Makarewicz

    (Department of Aircraft Engines, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland)

Abstract

Recent announcements regarding the phase out of internal combustion engines indicate the need to make major changes in the automotive industry. Bearing in mind this innovation trend, the article proposes a new approach to the engine design. The aim of this paper is to shed a new light on the forgotten concept of axial engines with wobble plate mechanism. One of their most important advantages is the ease of use of the opposed piston layout, which has recently received much attention. Based on several years of research, the features determining the increase in mechanical efficiency, lower heat losses and the best scavenging efficiency were indicated. Thanks to the applied Variable Compression Ratio (VCR), Variable Angle Shift (VAS) and Variable Port Area (VPA) systems, the engine can operate on various fuels in each of the Spark Ignition (SI), Compression Ignition (CI) and Homogeneous Charge Compression Ignition (HCCI)/Controlled Auto Ignition (CAI) modes. In order to quantify the potential of the proposed design, an initial research of the newest PAMAR 4 engine was presented to calculate the torque curve at low rotational speeds. The achieved torque of 500 Nm at 500 rpm is 65% greater than the maximum torque of the OM 651 engine of the same 1.8 L capacity. The findings lead to the conclusion that axial engines are wrongfully overlooked and can significantly improve research on new trends in pollutant elimination.

Suggested Citation

  • Paweł Mazuro & Barbara Makarewicz, 2020. "The Potential of Wobble Plate Opposed Piston Axial Engines for Increased Efficiency," Energies, MDPI, vol. 13(21), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5598-:d:435041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borut Jereb & Ondrej Stopka & Tomáš Skrúcaný, 2021. "Methodology for Estimating the Effect of Traffic Flow Management on Fuel Consumption and CO 2 Production: A Case Study of Celje, Slovenia," Energies, MDPI, vol. 14(6), pages 1-18, March.
    2. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Felipe Andrade Torres & Omid Doustdar & Jose Martin Herreros & Runzhao Li & Robert Poku & Athanasios Tsolakis & Jorge Martins & Silvio A. B. Vieira de Melo, 2021. "A Comparative Study of Biofuels and Fischer–Tropsch Diesel Blends on the Engine Combustion Performance for Reducing Exhaust Gaseous and Particulate Emissions," Energies, MDPI, vol. 14(6), pages 1-19, March.
    4. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
    5. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels," Energies, MDPI, vol. 14(5), pages 1-33, March.
    6. Mohd Fadzli Hamid & Yew Heng Teoh & Mohamad Yusof Idroas & Mazlan Mohamed & Shukriwani Sa’ad & Sharzali Che Mat & Muhammad Khalil Abdullah & Thanh Danh Le & Heoy Geok How & Huu Tho Nguyen, 2022. "A Review of the Emulsification Method for Alternative Fuels Used in Diesel Engines," Energies, MDPI, vol. 15(24), pages 1-26, December.
    7. Jufang Zhang & Xiumin Yu & Zezhou Guo & Yinan Li & Jiahua Zhang & Dongjie Liu, 2022. "Study on Combustion and Emissions of a Spark Ignition Engine with Gasoline Port Injection Plus Acetone–Butanol–Ethanol (ABE) Direct Injection under Different Speeds and Loads," Energies, MDPI, vol. 15(19), pages 1-22, September.
    8. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    9. Gonzalo Suanes & David Bolonio & Antonio Cantero, 2023. "Definition of the Thermodynamic Cycle of a Biomass-Fueled Internal Combustion Engine," Energies, MDPI, vol. 16(2), pages 1-29, January.
    10. José A. Ventura, 2023. "Climate Benefits Advocated by the Development of Sustainable Vehicles and Charging Infrastructures in the Transport Sector," Energies, MDPI, vol. 16(9), pages 1-5, April.
    11. Carvalho, Rui & Martins, Jorge & Pacheco, Nuno & Puga, Hélder & Costa, Joaquim & Vieira, Rui & Goncalves, L.M. & Brito, Francisco P., 2023. "Experimental validation and numerical assessment of a temperature-controlled thermoelectric generator concept aimed at maximizing performance under highly variable thermal load driving cycles," Energy, Elsevier, vol. 280(C).
    12. Rafał Longwic & Przemysław Sander & Bronisław Jańczuk & Anna Zdziennicka & Katarzyna Szymczyk, 2021. "Modification of Canola Oil Physicochemical Properties by Hexane and Ethanol with Regards of Its Application in Diesel Engine," Energies, MDPI, vol. 14(15), pages 1-14, July.
    13. Zandie, Mohammad & Ng, Hoon Kiat & Muhamad Said, Mohd Farid & Cheng, Xinwei & Gan, Suyin, 2023. "Performance of a compression ignition engine fuelled with diesel-palm biodiesel-gasoline mixtures: CFD and multi parameter optimisation studies," Energy, Elsevier, vol. 274(C).
    14. Ronelly De Souza & Melchiorre Casisi & Diego Micheli & Mauro Reini, 2021. "A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario," Energies, MDPI, vol. 14(17), pages 1-30, August.
    15. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    16. Zdzisław Chłopek & Hubert Sar & Krystian Szczepański & Dagna Zakrzewska, 2023. "Operational Issues of Using Replacement Fuels to Power Internal Combustion Engines," Energies, MDPI, vol. 16(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5598-:d:435041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.