IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5522-d432422.html
   My bibliography  Save this article

From Niche to Market—An Agent-Based Modeling Approach for the Economic Uptake of Electro-Fuels (Power-to-Fuel) in the German Energy System

Author

Listed:
  • Christian Schnuelle

    (Department of Resilient Energy Systems, University of Bremen, Enrique-Schmidt-Straße 7, 28359 Bremen, Germany)

  • Kasper Kisjes

    (Rijksuniversiteit Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands)

  • Torben Stuehrmann

    (Department of Resilient Energy Systems, University of Bremen, Enrique-Schmidt-Straße 7, 28359 Bremen, Germany)

  • Pablo Thier

    (Department of Resilient Energy Systems, University of Bremen, Enrique-Schmidt-Straße 7, 28359 Bremen, Germany)

  • Igor Nikolic

    (Department of Multi-Actor Systems, Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands)

  • Arnim von Gleich

    (Department of Technology Development and Design, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany)

  • Stefan Goessling-Reisemann

    (Department of Resilient Energy Systems, University of Bremen, Enrique-Schmidt-Straße 7, 28359 Bremen, Germany)

Abstract

The transition process towards renewable energy systems is facing challenges in both fluctuating electricity generation of photovoltaic and wind power as well as socio-economic disruptions. With regard to sector integration, solutions need to be developed, especially for the mobility and the industry sector, because their ad hoc electrification and decarbonization seem to be unfeasible. Power-to-fuel (P2F) technologies may contribute to bridge the gap, as renewable energy can be transferred into hydrogen and hydrocarbon-based synthetic fuels. However, the renewable fuels production is far from economically competitive with conventional fuels. With a newly developed agent-based model, potential developments in the German energy markets were simulated for a horizon of 20 years from 2016 to 2035. The model was constructed through a participatory modeling process with relevant actors and stakeholders in the field. Model findings suggest that adjusted regulatory framework conditions (e.g., exemptions from electricity surtaxes, accurate prices for CO 2 -certificates, strong start-up subsidies, and drastic emission reduction quotas) are key factors for economically feasible P2F installations and will contribute to its large-scale integration into the German energy system. While plant capacities do not exceed 0.042 GW in a business-as-usual scenarios, the above-mentioned adjustments lead to plant capacities of at least 3.25 GW in 2035 with concurrent reduction in product prices.

Suggested Citation

  • Christian Schnuelle & Kasper Kisjes & Torben Stuehrmann & Pablo Thier & Igor Nikolic & Arnim von Gleich & Stefan Goessling-Reisemann, 2020. "From Niche to Market—An Agent-Based Modeling Approach for the Economic Uptake of Electro-Fuels (Power-to-Fuel) in the German Energy System," Energies, MDPI, vol. 13(20), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5522-:d:432422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. König, Daniel H. & Baucks, Nadine & Dietrich, Ralph-Uwe & Wörner, Antje, 2015. "Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2," Energy, Elsevier, vol. 91(C), pages 833-841.
    2. Graves, Christopher & Ebbesen, Sune D. & Mogensen, Mogens & Lackner, Klaus S., 2011. "Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 1-23, January.
    3. Manfred Sargl & Andreas Wolfsteiner & Günter Wittmann, 2011. "Neue Weltklimaordnung: Emissionshandel zwischen Staaten mit schrittweiser Klimagerechtigkeit," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 91(10), pages 704-711, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ralf Peters & Maximilian Decker & Janos Lucian Breuer & Remzi Can Samsun & Detlef Stolten, 2024. "Ramping-Up Electro-Fuel Production," Energies, MDPI, vol. 17(8), pages 1-47, April.
    2. Ruiqiu Yao & Yukun Hu & Liz Varga, 2023. "Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review," Energies, MDPI, vol. 16(5), pages 1-36, March.
    3. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Mendoza, Joan Manuel F. & Gallego-Schmid, Alejandro & Velenturf, Anne P.M. & Jensen, Paul D. & Ibarra, Dorleta, 2022. "Circular economy business models and technology management strategies in the wind industry: Sustainability potential, industrial challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Georg Holtz & Christian Schnülle & Malcolm Yadack & Jonas Friege & Thorben Jensen & Pablo Thier & Peter Viebahn & Émile J. L. Chappin, 2020. "Using Agent-Based Models to Generate Transformation Knowledge for the German Energiewende—Potentials and Challenges Derived from Four Case Studies," Energies, MDPI, vol. 13(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    2. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    3. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    4. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    5. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    6. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    7. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    8. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    9. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    10. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    11. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    12. Meenakshi Sharma & Rajesh Kaushal & Prashant Kaushik & Seeram Ramakrishna, 2021. "Carbon Farming: Prospects and Challenges," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    13. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    14. Lester, Mason Scott & Bramstoft, Rasmus & Münster, Marie, 2020. "Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study," Energy, Elsevier, vol. 199(C).
    15. Nzihou, Ange & Flamant, Gilles & Stanmore, Brian, 2012. "Synthetic fuels from biomass using concentrated solar energy – A review," Energy, Elsevier, vol. 42(1), pages 121-131.
    16. Kauw, Marco & Benders, René M.J. & Visser, Cindy, 2015. "Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany," Energy, Elsevier, vol. 90(P1), pages 208-217.
    17. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    18. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    19. Atsonios, Konstantinos & Li, Jun & Inglezakis, Vassilis J., 2023. "Process analysis and comparative assessment of advanced thermochemical pathways for e-kerosene production," Energy, Elsevier, vol. 278(PA).
    20. Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5522-:d:432422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.