IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4294-d401217.html
   My bibliography  Save this article

Evaluation of Suitable Areas to Introduce a Closed-Loop Ground Source Heat Pump System in the Case of a Standard Japanese Detached Residence

Author

Listed:
  • Gaurav Shrestha

    (Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiikedai, Koriyama 963-0298, Japan)

  • Mayumi Yoshioka

    (Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan)

  • Hikari Fujii

    (Graduate School of International Resource Sciences, Akita University, 1-1 Tegatagakuencho, Akita 010-8502, Japan)

  • Youhei Uchida

    (Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiikedai, Koriyama 963-0298, Japan)

Abstract

Evaluation of appropriate areas to introduce a closed-loop ground-source heat pump (GSHP) system in the case of a standard detached residence was conducted in Akita Plain, Japan. Depth of borehole heat exchanger (BHE) required to use a GSHP system was taken as the suitability index, which is simpler for the general public to understand and to promote the system. Heating and cooling loads of the standard size detached residence were calculated based on the 2013 Energy Conservation Standard. To estimate BHE depths and estimate a suitable area, identical 3D BHE models were constructed at 30 points in the plain. Required BHE depths were determined by performing heat exchange simulations at each location using the calculated loads and heat exchange rates. A suitability map showing distribution of the required BHE depths was prepared. BHE depths were shorter in the north-western area compared to the other parts, implying that the coastal lowlands in this area are more suitable for closed-loop system in the standard detached residences in terms of heat exchange performance as well as the cost reduction. Thickly distributed Quaternary System with higher thermal conductivity is contributing to shorter BHE depths. The suitability map is effective to adopt potential areas for the system installation in the standard detached Japanese residences.

Suggested Citation

  • Gaurav Shrestha & Mayumi Yoshioka & Hikari Fujii & Youhei Uchida, 2020. "Evaluation of Suitable Areas to Introduce a Closed-Loop Ground Source Heat Pump System in the Case of a Standard Japanese Detached Residence," Energies, MDPI, vol. 13(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4294-:d:401217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4294/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4294/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takeshi Ishihara & Gaurav Shrestha & Shohei Kaneko & Youhei Uchida, 2018. "Analysis of Shallow Subsurface Geological Structures and Ground Effective Thermal Conductivity for the Evaluation of Ground-Source Heat Pump System Installation in the Aizu Basin, Northeast Japan," Energies, MDPI, vol. 11(8), pages 1-14, August.
    2. Gehlin, S.E.A. & Hellström, G., 2003. "Influence on thermal response test by groundwater flow in vertical fractures in hard rock," Renewable Energy, Elsevier, vol. 28(14), pages 2221-2238.
    3. Tarnawski, V.R. & Leong, W.H. & Momose, T. & Hamada, Y., 2009. "Analysis of ground source heat pumps with horizontal ground heat exchangers for northern Japan," Renewable Energy, Elsevier, vol. 34(1), pages 127-134.
    4. Shrestha, Gaurav & Uchida, Youhei & Yoshioka, Mayumi & Fujii, Hikari & Ioka, Seiichiro, 2015. "Assessment of development potential of ground-coupled heat pump system in Tsugaru Plain, Japan," Renewable Energy, Elsevier, vol. 76(C), pages 249-257.
    5. Shohei Kaneko & Youhei Uchida & Gaurav Shrestha & Takeshi Ishihara & Mayumi Yoshioka, 2018. "Factors Affecting the Installation Potential of Ground Source Heat Pump Systems: A Comparative Study for the Sendai Plain and Aizu Basin, Japan," Energies, MDPI, vol. 11(10), pages 1-17, October.
    6. Sang Mu Bae & Yujin Nam & Byoung Ohan Shim, 2018. "Feasibility Study of Ground Source Heat Pump System Considering Underground Thermal Properties," Energies, MDPI, vol. 11(7), pages 1-20, July.
    7. Gaurav Shrestha & Youhei Uchida & Takeshi Ishihara & Shohei Kaneko & Satoru Kuronuma, 2018. "Assessment of the Installation Potential of a Ground Source Heat Pump System Based on the Groundwater Condition in the Aizu Basin, Japan," Energies, MDPI, vol. 11(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Sliwa & Tomasz Kowalski & Dominik Cekus & Aneta Sapińska-Śliwa, 2021. "Research on Fresh and Hardened Sealing Slurries with the Addition of Magnesium Regarding Thermal Conductivity for Energy Piles and Borehole Heat Exchangers," Energies, MDPI, vol. 14(16), pages 1-13, August.
    2. Yoshitaka Sakata & Yuma Akeyama & Takao Katsura & Katsunori Nagano, 2023. "Evaluating Long-Term Performance of a Residential Ground-Source Heat Pump System under Climate Change in Cold and Warm Cities of Japan," Energies, MDPI, vol. 16(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shohei Kaneko & Youhei Uchida & Gaurav Shrestha & Takeshi Ishihara & Mayumi Yoshioka, 2018. "Factors Affecting the Installation Potential of Ground Source Heat Pump Systems: A Comparative Study for the Sendai Plain and Aizu Basin, Japan," Energies, MDPI, vol. 11(10), pages 1-17, October.
    2. Shohei Kaneko & Akira Tomigashi & Takeshi Ishihara & Gaurav Shrestha & Mayumi Yoshioka & Youhei Uchida, 2020. "Proposal for a Method Predicting Suitable Areas for Installation of Ground-Source Heat Pump Systems Based on Response Surface Methodology," Energies, MDPI, vol. 13(8), pages 1-18, April.
    3. Gaurav Shrestha & Youhei Uchida & Takeshi Ishihara & Shohei Kaneko & Satoru Kuronuma, 2018. "Assessment of the Installation Potential of a Ground Source Heat Pump System Based on the Groundwater Condition in the Aizu Basin, Japan," Energies, MDPI, vol. 11(5), pages 1-14, May.
    4. Takeshi Ishihara & Gaurav Shrestha & Shohei Kaneko & Youhei Uchida, 2018. "Analysis of Shallow Subsurface Geological Structures and Ground Effective Thermal Conductivity for the Evaluation of Ground-Source Heat Pump System Installation in the Aizu Basin, Northeast Japan," Energies, MDPI, vol. 11(8), pages 1-14, August.
    5. Elżbieta Hałaj & Leszek Pająk & Bartosz Papiernik, 2020. "Finite Element Modeling of Geothermal Source of Heat Pump in Long-Term Operation," Energies, MDPI, vol. 13(6), pages 1-18, March.
    6. Wenting Ma & Moon Keun Kim & Jianli Hao, 2019. "Numerical Simulation Modeling of a GSHP and WSHP System for an Office Building in the Hot Summer and Cold Winter Region of China: A Case Study in Suzhou," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    7. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    8. Charles Maragna & Fleur Loveridge, 2021. "A New Approach for Characterizing Pile Heat Exchangers Using Thermal Response Tests," Energies, MDPI, vol. 14(12), pages 1-18, June.
    9. Seokjae Lee & Sangwoo Park & Taek Hee Han & Jongmuk Won & Hangseok Choi, 2023. "Applicability Evaluation of Energy Slabs Installed in an Underground Parking Lot," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    10. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    11. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    12. Linlin Zhang & Zhonghua Shi & Tianhao Yuan, 2020. "Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    13. Borja Badenes & Miguel Ángel Mateo Pla & Teresa Magraner & Javier Soriano & Javier F. Urchueguía, 2020. "Theoretical and Experimental Cost–Benefit Assessment of Borehole Heat Exchangers (BHEs) According to Working Fluid Flow Rate," Energies, MDPI, vol. 13(18), pages 1-29, September.
    14. de Moel, Monique & Bach, Peter M. & Bouazza, Abdelmalek & Singh, Rao M. & Sun, JingLiang O., 2010. "Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2683-2696, December.
    15. Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen, 2020. "Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger," Energies, MDPI, vol. 13(21), pages 1-17, November.
    16. Liu, Zhengguang & Wang, Wene & Chen, Yuntian & Wang, Lili & Guo, Zhiling & Yang, Xiaohu & Yan, Jinyue, 2023. "Solar harvest: Enhancing carbon sequestration and energy efficiency in solar greenhouses with PVT and GSHP systems," Renewable Energy, Elsevier, vol. 211(C), pages 112-125.
    17. Hakala, Petri & Vallin, Sami & Arola, Teppo & Martinkauppi, Ilkka, 2022. "Novel use of the enhanced thermal response test in crystalline bedrock," Renewable Energy, Elsevier, vol. 182(C), pages 467-482.
    18. Seama Koohi-Fayegh & Marc A. Rosen, 2013. "A Review of the Modelling of Thermally Interacting Multiple Boreholes," Sustainability, MDPI, vol. 5(6), pages 1-18, June.
    19. Yu, Jie & Zhang, Huan & You, Shijun, 2012. "Heat transfer analysis and experimental verification of casted heat exchanger in non-icing and icing conditions in winter," Renewable Energy, Elsevier, vol. 41(C), pages 39-43.
    20. Raymond, J. & Therrien, R. & Gosselin, L. & Lefebvre, R., 2011. "Numerical analysis of thermal response tests with a groundwater flow and heat transfer model," Renewable Energy, Elsevier, vol. 36(1), pages 315-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4294-:d:401217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.