IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3463-d380313.html
   My bibliography  Save this article

Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke

Author

Listed:
  • Hachem Hamadeh

    (Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada)

  • Sannan Y. Toor

    (Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada)

  • Peter L. Douglas

    (Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada)

  • S. Mani Sarathy

    (Clean Combustion Research Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia)

  • Robert W. Dibble

    (Clean Combustion Research Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia)

  • Eric Croiset

    (Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada)

Abstract

Petroleum coke (petcoke) is a by-product of heavy petroleum refining, with heating values comparable to that of coal. It is readily available in oil-producing countries such as the United States of America (USA) and the Kingdom of Saudi Arabia (KSA) at minimum costs and can be used as an inexpensive fossil fuel for power generation. Oxy-petcoke combustion is an attractive CO 2 capture option as it avoids the use of additional absorption units and chemicals, and results in a CO 2 + H 2 O flue gas stream that is compressed and dehydrated in a CO 2 capture and purification unit (CO 2 CPU). The additional cost of the CO 2 CPU can be reduced through high pressure combustion. Hence, this paper reports a techno-economic analysis of an oxy-petcoke plant with CO 2 capture simulated at pressures between 1 and 15 bars in Aspen Plus TM based on USA and KSA scenarios. Operating at high pressures leads to reduced equipment sizes and numbers of units, specifically compressors in CO 2 CPU, resulting in increased efficiencies and decreased costs. An optimum pressure of ~10 bars was found to maximize the plant efficiency (~29.7%) and minimize the levelized cost of electricity ( LCOE ), cost of CO 2 avoided and cost of CO 2 captured for both the USA and KSA scenarios. The LCOE was found to be moderately sensitive to changes in the capital cost (~0.7% per %) and increases in cost of petcoke (~0.5% per USD/tonne) and insensitive to the costs of labour, utilities and waste treatment.

Suggested Citation

  • Hachem Hamadeh & Sannan Y. Toor & Peter L. Douglas & S. Mani Sarathy & Robert W. Dibble & Eric Croiset, 2020. "Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke," Energies, MDPI, vol. 13(13), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3463-:d:380313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Jongsup & Field, Randall & Gazzino, Marco & Ghoniem, Ahmed F., 2010. "Operating pressure dependence of the pressurized oxy-fuel combustion power cycle," Energy, Elsevier, vol. 35(12), pages 5391-5399.
    2. Shareq Mohd Nazir & Olav Bolland & Shahriar Amini, 2018. "Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO 2 Capture," Energies, MDPI, vol. 11(1), pages 1-13, January.
    3. Zebian, Hussam & Gazzino, Marco & Mitsos, Alexander, 2012. "Multi-variable optimization of pressurized oxy-coal combustion," Energy, Elsevier, vol. 38(1), pages 37-57.
    4. Gopan, Akshay & Kumfer, Benjamin M. & Phillips, Jeffrey & Thimsen, David & Smith, Richard & Axelbaum, Richard L., 2014. "Process design and performance analysis of a Staged, Pressurized Oxy-Combustion (SPOC) power plant for carbon capture," Applied Energy, Elsevier, vol. 125(C), pages 179-188.
    5. Chen, Shiyi & Yu, Ran & Soomro, Ahsanullah & Xiang, Wenguo, 2019. "Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture," Energy, Elsevier, vol. 175(C), pages 445-455.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luiz Fernando Rodrigues Pinto & Henrricco Nieves Pujol Tucci & Giovanni Mummolo & Geraldo Cardoso de Oliveira Neto & Francesco Facchini, 2022. "Circular Economy Approach on Energy Cogeneration in Petroleum Refining," Energies, MDPI, vol. 15(5), pages 1-15, February.
    2. Izabela Sówka & Sławomir Pietrowicz & Piotr Kolasiński, 2021. "Energy Processes, Systems and Equipment," Energies, MDPI, vol. 14(6), pages 1-4, March.
    3. Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Olga Zlyvko & Andrey Vegera, 2021. "A Study of Low-Potential Heat Utilization Methods for Oxy-Fuel Combustion Power Cycles," Energies, MDPI, vol. 14(12), pages 1-14, June.
    4. Jolanta Telenga-Kopyczyńska & Izabela Jonek-Kowalska, 2021. "Algorithm for Selecting Best Available Techniques in Polish Coking Plants Supporting Multi-Criteria Investment Decisions in European Environmental Conditions," Energies, MDPI, vol. 14(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Donghee & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Demonstration of 0.1 MWth pilot-scale pressurized oxy-fuel combustion for unpurified natural gas without CO2 dilution," Energy, Elsevier, vol. 223(C).
    2. Rahman, Zia ur & Wang, Xuebin & Zhang, Jiaye & Yang, Zhiwei & Dai, Gaofeng & Verma, Piyush & Mikulcic, Hrvoje & Vujanovic, Milan & Tan, Houzhang & Axelbaum, Richard L., 2022. "Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Kim, Donghee & Ahn, Hyungjun & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Experimental analysis of CO/H2 syngas with NOx and SOx reactions in pressurized oxy-fuel combustion," Energy, Elsevier, vol. 219(C).
    4. Pang, Lei & Shao, Yingjuan & Zhong, Wenqi & Gong, Zheng & Liu, Hao, 2020. "Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor," Energy, Elsevier, vol. 194(C).
    5. Gopan, Akshay & Kumfer, Benjamin M. & Phillips, Jeffrey & Thimsen, David & Smith, Richard & Axelbaum, Richard L., 2014. "Process design and performance analysis of a Staged, Pressurized Oxy-Combustion (SPOC) power plant for carbon capture," Applied Energy, Elsevier, vol. 125(C), pages 179-188.
    6. Pang, Lei & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2018. "Experimental investigation on the coal combustion in a pressurized fluidized bed," Energy, Elsevier, vol. 165(PB), pages 1119-1128.
    7. Kim, Taewoo & Park, So Dam & Lee, Uen Do & Park, Byeong Cheol & Park, Kyoung Il & Hong, Jongsup, 2021. "Thermodynamic analysis of the 2nd generation pressurized fluidized-bed combustion cycle utilizing an oxy-coal boiler and a gasifier," Energy, Elsevier, vol. 236(C).
    8. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    9. Zebian, Hussam & Mitsos, Alexander, 2014. "Pressurized OCC (oxy-coal combustion) process ideally flexible to the thermal load," Energy, Elsevier, vol. 73(C), pages 416-429.
    10. Zebian, Hussam & Mitsos, Alexander, 2013. "Pressurized oxy-coal combustion: Ideally flexible to uncertainties," Energy, Elsevier, vol. 57(C), pages 513-526.
    11. Chowdhury, Mehrin & Khan, Mohieminul Islam & Islam, Nawshad Arslan & Choudhuri, Ahsan, 2022. "Design and performance analysis of a Swirl Pintle injector for a 1 MWth pressurized oxy-coal combustor," Energy, Elsevier, vol. 261(PB).
    12. Zebian, Hussam & Mitsos, Alexander, 2014. "A split concept for HRSG (heat recovery steam generators) with simultaneous area reduction and performance improvement," Energy, Elsevier, vol. 71(C), pages 421-431.
    13. Zebian, Hussam & Rossi, Nicola & Gazzino, Marco & Cumbo, Danila & Mitsos, Alexander, 2013. "Optimal design and operation of pressurized oxy-coal combustion with a direct contact separation column," Energy, Elsevier, vol. 49(C), pages 268-278.
    14. Dobó, Zsolt & Backman, Marc & Whitty, Kevin J., 2019. "Experimental study and demonstration of pilot-scale oxy-coal combustion at elevated temperatures and pressures," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Symonds, Robert T. & Hughes, Robin W. & De Las Obras Loscertales, Margarita, 2020. "Oxy-pressurized fluidized bed combustion: Configuration and options analysis," Applied Energy, Elsevier, vol. 262(C).
    16. Chen, Shiyi & Yu, Ran & Soomro, Ahsanullah & Xiang, Wenguo, 2019. "Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture," Energy, Elsevier, vol. 175(C), pages 445-455.
    17. Kim, Hyung Woo & Seo, Su Been & Kang, Seo Yeong & Go, Eun Sol & Oh, Seung Seok & Lee, YongWoon & Yang, Won & Lee, See Hoon, 2021. "Effect of flue gas recirculation on efficiency of an indirect supercritical CO2 oxy-fuel circulating fluidized bed power plant," Energy, Elsevier, vol. 227(C).
    18. Dai, Gaofeng & Zhang, Jiaye & Wang, Xuebin & Tan, Houzhang & Rahman, Zia ur, 2022. "Calcination and desulfurization characteristics of calcium carbonate in pressurized oxy-combustion," Energy, Elsevier, vol. 261(PA).
    19. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    20. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3463-:d:380313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.