IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2950-d369001.html
   My bibliography  Save this article

Design and Construction of a New Metering Hot Box for the In Situ Hygrothermal Measurement in Dynamic Conditions of Historic Masonries

Author

Listed:
  • Mirco Andreotti

    (Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara, Italy)

  • Marta Calzolari

    (Department of Engineering and Architecture of the University of Parma, 43124 Parma, Italy)

  • Pietromaria Davoli

    (Architettura>Energia Research Centre, Department of Architecture-University of Ferrara, 44121 Ferrara, Italy)

  • Luisa Dias Pereira

    (Architettura>Energia Research Centre, Department of Architecture-University of Ferrara, 44121 Ferrara, Italy)

  • Elena Lucchi

    (Eurac Research, 39100 Bolzano, Italy)

  • Roberto Malaguti

    (Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara, Italy)

Abstract

The main purpose of the HeLLo project is to contribute to data available on the literature on the real hygrothermal behavior of historic walls and the suitability of insulation technologies. Furthermore, it also aims at minimizing the energy simulation errors at the design phase and at improving their conservation features. In this framework, one of the preliminary activities of the study is the creation of a real in situ hot box to measure and analyze different insulation technologies applied to a real historic wall, to quantify the hygrothermal performance of a masonry building. Inside this box, ‘traditional’ experiments can be carried out: recording heat flux, surface temperature, and air temperatures, as well as relative humidity values through the use of a new sensing system (composed of thermocouples and temperature/relative humidity combined sensors). Within this paper, the process of development, construction, and validation of this new metering box is exhibited. The new hot box, specifically studied for historic case studies, when compared to other boxes, presents other advantages compared to previous examples, widely exemplified.

Suggested Citation

  • Mirco Andreotti & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Roberto Malaguti, 2020. "Design and Construction of a New Metering Hot Box for the In Situ Hygrothermal Measurement in Dynamic Conditions of Historic Masonries," Energies, MDPI, vol. 13(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2950-:d:369001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Cattarin, G. & Causone, F. & Kindinis, A. & Pagliano, L., 2016. "Outdoor test cells for building envelope experimental characterisation – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 606-625.
    3. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    4. Luca Evangelisti & Gabriele Battista & Claudia Guattari & Carmine Basilicata & Roberto De Lieto Vollaro, 2014. "Analysis of Two Models for Evaluating the Energy Performance of Different Buildings," Sustainability, MDPI, vol. 6(8), pages 1-11, August.
    5. Lucchi, Elena, 2018. "Applications of the infrared thermography in the energy audit of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3077-3090.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Szymczak-Graczyk & Gabriela Gajewska & Ireneusz Laks & Wojciech Kostrzewski, 2022. "Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Isidro Calvo & Aitana Espin & Jose Miguel Gil-García & Pablo Fernández Bustamante & Oscar Barambones & Estibaliz Apiñaniz, 2022. "Scalable IoT Architecture for Monitoring IEQ Conditions in Public and Private Buildings," Energies, MDPI, vol. 15(6), pages 1-23, March.
    3. Karam M. Al-Obaidi & Mohataz Hossain & Nayef A. M. Alduais & Husam S. Al-Duais & Hossein Omrany & Amirhosein Ghaffarianhoseini, 2022. "A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective," Energies, MDPI, vol. 15(16), pages 1-32, August.
    4. Reyhan Sabri & Haşim Altan & Danah AlGhareeb & Noora Alkhaja, 2020. "Heritage Reconstruction Planning, Sustainability Dimensions, and the Case of the Khaz’al Diwan in Kuwait," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    5. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    6. Iole Nardi & Elena Lucchi, 2023. "In Situ Thermal Transmittance Assessment of the Building Envelope: Practical Advice and Outlooks for Standard and Innovative Procedures," Energies, MDPI, vol. 16(8), pages 1-31, April.
    7. Mirco Andreotti & Dario Bottino-Leone & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Alexandra Troi, 2020. "Applied Research of the Hygrothermal Behaviour of an Internally Insulated Historic Wall without Vapour Barrier: In Situ Measurements and Dynamic Simulations," Energies, MDPI, vol. 13(13), pages 1-22, July.
    8. Dwinanto Sukamto & Monica Siroux & Francois Gloriant, 2021. "Hot Box Investigations of a Ventilated Bioclimatic Wall for NZEB Building Façade," Energies, MDPI, vol. 14(5), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    2. Agnieszka Leśniak & Monika Górka & Izabela Skrzypczak, 2021. "Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study," Energies, MDPI, vol. 14(8), pages 1-20, April.
    3. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Norasikin Ahmad Ludin & Nurfarhana Alyssa Ahmad Affandi & Kathleen Purvis-Roberts & Azah Ahmad & Mohd Adib Ibrahim & Kamaruzzaman Sopian & Sufian Jusoh, 2021. "Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    5. Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
    6. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    7. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Paweł Sokołowski & Grzegorz Nawalany & Tomasz Jakubowski & Ernest Popardowski & Vasyl Lopushniak & Atilgan Atilgan, 2022. "Numerical Analysis of Thermal Impact between the Cooling Facility and the Ground," Energies, MDPI, vol. 15(24), pages 1-16, December.
    9. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    10. López-Guerrero, Rafael E. & Vera, Sergio & Carpio, Manuel, 2022. "A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Hyung Jun An & Jong Ho Yoon & Young Sub An & Eunnyeong Heo, 2018. "Heating and Cooling Performance of Office Buildings with a-Si BIPV Windows Considering Operating Conditions in Temperate Climates: The Case of Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    12. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    13. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    14. Elombo Motoula, Smaël Magloire & Gomat, Landry Jean Pierre & Lin, Jian & M’passi Mabiala, Bernard, 2022. "Continuum approach to evaluate humidity transportation by an Earth to Air Energy Exchanger," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Egusquiza, A. & Ginestet, S. & Espada, J.C. & Flores-Abascal, I. & Garcia-Gafaro, C. & Giraldo-Soto, C. & Claude, S. & Escadeillas, G., 2021. "Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Ferdinando Salata & Iacopo Golasi & Alessandro Poliziani & Antonio Futia & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Management Optimization of the Luminous Flux Regulation of a Lighting System in Road Tunnels. A First Approach to the Exertion of Predictive Control Systems," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
    17. Amedeo Caprino & Filippo Lorenzoni & Laura Carnieletto & Leonardo Feletto & Michele De Carli & Francesca da Porto, 2021. "Integrated Seismic and Energy Retrofit Interventions on a URM Masonry Building: The Case Study of the Former Courthouse in Fabriano," Sustainability, MDPI, vol. 13(17), pages 1-30, August.
    18. Yorgos Spanodimitriou & Giovanni Ciampi & Michelangelo Scorpio & Niloufar Mokhtari & Ainoor Teimoorzadeh & Roberta Laffi & Sergio Sibilio, 2022. "Passive Strategies for Building Retrofitting: Performances Analysis and Incentive Policies for the Iranian Scenario," Energies, MDPI, vol. 15(5), pages 1-22, February.
    19. Grzegorz Nawalany & Paweł Sokołowski, 2022. "Interaction between a Cyclically Heated Building and the Ground, for Selected Locations in Europe," Energies, MDPI, vol. 15(20), pages 1-17, October.
    20. Al-Awsh, Waleed A. & Qasem, Naef A.A. & Al-Amoudi, Omar S. Baghabra & Al-Osta, Mohammed A., 2020. "Experimental and numerical investigation on innovative masonry walls for industrial and residential buildings," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2950-:d:369001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.