IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p745-d208613.html
   My bibliography  Save this article

Synthesis and Optimal Operation of Smart Microgrids Serving a Cluster of Buildings on a Campus with Centralized and Distributed Hybrid Renewable Energy Units

Author

Listed:
  • Daniele Testi

    (DESTEC (Department of Energy Engineering), University of Pisa, 56122 Pisa, Italy)

  • Paolo Conti

    (DESTEC (Department of Energy Engineering), University of Pisa, 56122 Pisa, Italy)

  • Eva Schito

    (DESTEC (Department of Energy Engineering), University of Pisa, 56122 Pisa, Italy)

  • Luca Urbanucci

    (DESTEC (Department of Energy Engineering), University of Pisa, 56122 Pisa, Italy)

  • Francesco D’Ettorre

    (DESTEC (Department of Energy Engineering), University of Pisa, 56122 Pisa, Italy)

Abstract

Micro-district heating networks based on cogeneration plants and renewable energy technologies are considered efficient, viable and environmentally-friendly solutions to realizing smart multi-energy microgrids. Nonetheless, the energy production from renewable sources is intermittent and stochastic, and cogeneration units are characterized by fixed power-to-heat ratios, which are incompatible with fluctuating thermal and electric demands. These drawbacks can be partially overcome by smart operational controls that are capable of maximizing the energy system performance. Moreover, electrically driven heat pumps may add flexibility to the system, by shifting thermal loads into electric loads. In this paper, a novel configuration for smart multi-energy microgrids, which combines centralized and distributed energy units is proposed. A centralized cogeneration system, consisting of an internal combustion engine is connected to a micro-district heating network. Distributed electric heat pumps assist the thermal production at the building level, giving operational flexibility to the system and supporting the integration of renewable energy technologies, i.e., wind turbines, photovoltaic panels, and solar thermal collectors. The proposed configuration was tested in a hypothetical case study, namely, a University Campus located in Trieste, Italy. The system operation is based on a cost-optimal control strategy and the effect of the size of the cogeneration unit and heat pumps was investigated. A comparison with a conventional configuration, without distributed heat pumps, was also performed. The results show that the proposed configuration outperformed the conventional one, leading to a total-cost saving of around 8%, a carbon emission reduction of 11%, and a primary energy saving of 8%.

Suggested Citation

  • Daniele Testi & Paolo Conti & Eva Schito & Luca Urbanucci & Francesco D’Ettorre, 2019. "Synthesis and Optimal Operation of Smart Microgrids Serving a Cluster of Buildings on a Campus with Centralized and Distributed Hybrid Renewable Energy Units," Energies, MDPI, vol. 12(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:745-:d:208613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/745/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/745/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piacentino, Antonio & Barbaro, Chiara, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part II: Analysis of the applicative potential," Applied Energy, Elsevier, vol. 111(C), pages 1222-1238.
    2. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    3. Damilola A. Asaleye & Michael Breen & Michael D. Murphy, 2017. "A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid," Energies, MDPI, vol. 10(11), pages 1-29, November.
    4. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    5. Piacentino, Antonio & Barbaro, Chiara & Cardona, Fabio & Gallea, Roberto & Cardona, Ennio, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part I: Description of the method," Applied Energy, Elsevier, vol. 111(C), pages 1204-1221.
    6. Destro, Nicola & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "Components design and daily operation optimization of a hybrid system with energy storages," Energy, Elsevier, vol. 117(P2), pages 569-577.
    7. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Conti & Eva Schito & Daniele Testi, 2019. "Cost-Benefit Analysis of Hybrid Photovoltaic/Thermal Collectors in a Nearly Zero-Energy Building," Energies, MDPI, vol. 12(8), pages 1-22, April.
    2. Paolo Conti & Giovanni Lutzemberger & Eva Schito & Davide Poli & Daniele Testi, 2019. "Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening," Energies, MDPI, vol. 12(15), pages 1-25, August.
    3. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.
    4. Rong-Jong Wai, 2022. "Systematic Design of Energy-Saving Action Plans for Taiwan Campus by Considering Economic Benefits and Actual Demands," Energies, MDPI, vol. 15(18), pages 1-20, September.
    5. Paolo Conti & Carlo Bartoli & Alessandro Franco & Daniele Testi, 2020. "Experimental Analysis of an Air Heat Pump for Heating Service Using a “Hardware-In-The-Loop” System," Energies, MDPI, vol. 13(17), pages 1-18, September.
    6. Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Ostrycharczyk, Michał & Czerep, Michał & Plutecki, Zbigniew, 2019. "Potential and methods for increasing the flexibility and efficiency of the lignite fired power unit, using integrated lignite drying," Energy, Elsevier, vol. 181(C), pages 1142-1151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    3. Yokoyama, Ryohei & Tokunaga, Akira & Wakui, Tetsuya, 2018. "Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 153(C), pages 159-169.
    4. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    5. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    6. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    7. Francesco Calise & Massimo Dentice d’Accadia & Maria Vicidomini, 2022. "Integrated Solar Thermal Systems," Energies, MDPI, vol. 15(10), pages 1-8, May.
    8. Yokoyama, Ryohei & Shinano, Yuji & Taniguchi, Syusuke & Wakui, Tetsuya, 2019. "Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method," Energy, Elsevier, vol. 184(C), pages 45-57.
    9. Gaiser, Kyle & Stroeve, Pieter, 2014. "The impact of scheduling appliances and rate structure on bill savings for net-zero energy communities: Application to West Village," Applied Energy, Elsevier, vol. 113(C), pages 1586-1595.
    10. Stefania Guarino & Pietro Catrini & Alessandro Buscemi & Valerio Lo Brano & Antonio Piacentino, 2021. "Assessing the Energy-Saving Potential of a Dish-Stirling Con-Centrator Integrated Into Energy Plants in the Tertiary Sector," Energies, MDPI, vol. 14(4), pages 1-23, February.
    11. Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.
    12. Yokoyama, Ryohei & Shinano, Yuji & Wakayama, Yuki & Wakui, Tetsuya, 2019. "Model reduction by time aggregation for optimal design of energy supply systems by an MILP hierarchical branch and bound method," Energy, Elsevier, vol. 181(C), pages 782-792.
    13. Lythcke-Jørgensen, Christoffer & Ensinas, Adriano Viana & Münster, Marie & Haglind, Fredrik, 2016. "A methodology for designing flexible multi-generation systems," Energy, Elsevier, vol. 110(C), pages 34-54.
    14. Lythcke-Jørgensen, Christoffer & Clausen, Lasse Røngaard & Algren, Loui & Hansen, Anders Bavnhøj & Münster, Marie & Gadsbøll, Rasmus Østergaard & Haglind, Fredrik, 2017. "Optimization of a flexible multi-generation system based on wood chip gasification and methanol production," Applied Energy, Elsevier, vol. 192(C), pages 337-359.
    15. Antonio Piacentino & Roberto Gallea & Pietro Catrini & Fabio Cardona & Domenico Panno, 2016. "On the Reliability of Optimization Results for Trigeneration Systems in Buildings, in the Presence of Price Uncertainties and Erroneous Load Estimation," Energies, MDPI, vol. 9(12), pages 1-31, December.
    16. Benedetto Conte & Joan Carles Bruno & Alberto Coronas, 2016. "Optimal Cooling Load Sharing Strategies for Different Types of Absorption Chillers in Trigeneration Plants," Energies, MDPI, vol. 9(8), pages 1-16, July.
    17. Mancarella, Pierluigi & Chicco, Gianfranco & Capuder, Tomislav, 2018. "Arbitrage opportunities for distributed multi-energy systems in providing power system ancillary services," Energy, Elsevier, vol. 161(C), pages 381-395.
    18. Chris Underwood & Bobo Ng & Francis Yik, 2015. "Scheduling of Multiple Chillers in Trigeneration Plants," Energies, MDPI, vol. 8(10), pages 1-25, October.
    19. Michael D. Murphy & Paul D. O’Sullivan & Guilherme Carrilho da Graça & Adam O’Donovan, 2021. "Development, Calibration and Validation of an Internal Air Temperature Model for a Naturally Ventilated Nearly Zero Energy Building: Comparison of Model Types and Calibration Methods," Energies, MDPI, vol. 14(4), pages 1-24, February.
    20. Protić, Milan & Shamshirband, Shahaboddin & Petković, Dalibor & Abbasi, Almas & Mat Kiah, Miss Laiha & Unar, Jawed Akhtar & Živković, Ljiljana & Raos, Miomir, 2015. "Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm," Energy, Elsevier, vol. 87(C), pages 343-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:745-:d:208613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.