IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p649-d206729.html
   My bibliography  Save this article

Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework

Author

Listed:
  • Moath Alrifaey

    (Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Tang Sai Hong

    (Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Eris Elianddy Supeni

    (Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Azizan As’arry

    (Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Chun Kit Ang

    (Department of Mechanical Engineering, Faculty of Engineering, UCSI University, Taman Connaught, Kuala Lumpur 56000, Malaysia)

Abstract

The oil and gas industry is looking for ways to accurately identify and prioritize the failure modes (FMs) of the equipment. Failure mode and effect analysis (FMEA) is the most important tool used in the maintenance approach for the prevention of malfunctioning of the equipment. Current developments in the FMEA technique are mainly focused on addressing the drawbacks of the conventional risk priority number calculations, but the group effects and interrelationships of FMs on other measurements are neglected. In the present study, a hybrid distribution risk assessment framework was proposed to fill these gaps based on the combination of modified linguistic FMEA (LFMEA), Analytic Network Process (ANP), and Decision Making Trial and Evaluation Laboratory (DEMATEL) techniques. The hybrid framework of FMEA was conducted in a hazardous environment at a power generation unit in an oil and gas plant located in Yemen. The results show that mechanical and gas leakage FM in electrical generators posed a greater risk, which critically affects other FMs within the plant. It was observed that the suggested framework produced a precise ranking of FMs, with a clear relationship among FMs. Also, the comparisons of the proposed framework with previous studies demonstrated the multidisciplinary applications of the present framework.

Suggested Citation

  • Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:649-:d:206729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    2. Liou, James J.H. & Tzeng, Gwo-Hshiung & Chang, Han-Chun, 2007. "Airline safety measurement using a hybrid model," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 243-249.
    3. Wen-Chin Chen & Hui-Pin Chang & Kuan-Ming Lin & Neng-Hao Kan, 2015. "An Efficient Model for NPD Performance Evaluation Using DEMATEL and Fuzzy ANP—Applied to the TFT-LCD Touch Panel Industry in Taiwan," Energies, MDPI, vol. 8(10), pages 1-31, October.
    4. Mahmood Shafiee & Fateme Dinmohammadi, 2014. "An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore," Energies, MDPI, vol. 7(2), pages 1-24, February.
    5. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    6. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    7. Huang, Jia & Li, Zhaojun(Steven) & Liu, Hu-Chen, 2017. "New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 302-309.
    8. Ying-Chyi Chou & Chia-Han Yang & Ching-Hua Lu & Van Thac Dang & Pei-An Yang, 2017. "Building Criteria for Evaluating Green Project Management: An Integrated Approach of DEMATEL and ANP," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    9. Carmignani, Gionata, 2009. "An integrated structural framework to cost-based FMECA: The priority-cost FMECA," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 861-871.
    10. Hossein Safari & Zahra Faraji & Setareh Majidian, 2016. "Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 475-486, April.
    11. Gholamreza Dehdasht & Rosli Mohamad Zin & M. Salim Ferwati & Mu’azu Mohammed Abdullahi & Ali Keyvanfar & Ronald McCaffer, 2017. "DEMATEL-ANP Risk Assessment in Oil and Gas Construction Projects," Sustainability, MDPI, vol. 9(8), pages 1-24, August.
    12. Safar Fazli & Reza Kiani & Mohammadali Vosooghidizaji, 2015. "Crude oil supply chain risk management with DEMATEL–ANP," Post-Print hal-02327343, HAL.
    13. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Liu & Xiaojie Guo & Lanyong Zhang, 2019. "An Improved Assessment Method for FMEA for a Shipboard Integrated Electric Propulsion System Using Fuzzy Logic and DEMATEL Theory," Energies, MDPI, vol. 12(16), pages 1-17, August.
    2. Mara Lombardi & Mario Fargnoli & Giuseppe Parise, 2019. "Risk Profiling from the European Statistics on Accidents at Work (ESAW) Accidents′ Databases: A Case Study in Construction Sites," IJERPH, MDPI, vol. 16(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Lizarralde & Jaione Ganzarain & Mikel Zubizarreta, 2020. "Assessment and Selection of Technologies for the Sustainable Development of an R&D Center," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    2. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    3. Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Zhen Wang & Rongxi Wang & Wei Deng & Yong Zhao, 2022. "An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System," Energies, MDPI, vol. 15(5), pages 1-25, March.
    5. Jianghong Zhu & Bin Shuai & Rui Wang & Kwai-Sang Chin, 2019. "Risk Assessment for Failure Mode and Effects Analysis Using the Bonferroni Mean and TODIM Method," Mathematics, MDPI, vol. 7(6), pages 1-17, June.
    6. Gholamreza Dehdasht & Rosli Mohamad Zin & M. Salim Ferwati & Mu’azu Mohammed Abdullahi & Ali Keyvanfar & Ronald McCaffer, 2017. "DEMATEL-ANP Risk Assessment in Oil and Gas Construction Projects," Sustainability, MDPI, vol. 9(8), pages 1-24, August.
    7. Zhou, Ying & Li, Chenshuang & Zhou, Cheng & Luo, Hanbin, 2018. "Using Bayesian network for safety risk analysis of diaphragm wall deflection based on field data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 152-167.
    8. Yuqi Zhang & Sungik Kang & Ja-Hoon Koo, 2019. "What Is the Critical Factor and Relationship of Urban Regeneration in a Historic District?: A Case of the Nanluoguxiang Area in Beijing, China," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    9. Heng Zhang & Yaya Chen & Jingyu Cong & Junxiao Liu & Zhifu Zhang & Xirui Zhang, 2023. "Reliability Study of an Intelligent Profiling Progressive Automatic Glue Cutter Based on the Improved FMECA Method," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    10. Jing Xiao & Xiuli Wang & Hengjie Zhang, 2022. "Exploring the Ordinal Classifications of Failure Modes in the Reliability Management: An Optimization-Based Consensus Model with Bounded Confidences," Group Decision and Negotiation, Springer, vol. 31(1), pages 49-80, February.
    11. Li, Yaxin & Ding, Yuxin & Guo, Yuliang & Cui, Haizhou & Gao, Haiyi & Zhou, Ziyu & (Aaron) Zhang, Nanbo & Zhu, Siyao & Chen, Faan, 2023. "An integrated decision model with reliability to support transport safety system analysis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. Yuqi Zhang & Sungik Kang & Ja-Hoon Koo, 2021. "Perception Difference and Conflicts of Stakeholders in the Urban Regeneration Project: A Case Study of Nanluoguxiang," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    13. Carpitella, Silvia & Certa, Antonella & Izquierdo, Joaquín & La Fata, Concetta Manuela, 2018. "A combined multi-criteria approach to support FMECA analyses: A real-world case," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 394-402.
    14. María Carmen Carnero, 2020. "Waste Segregation FMEA Model Integrating Intuitionistic Fuzzy Set and the PAPRIKA Method," Mathematics, MDPI, vol. 8(8), pages 1-29, August.
    15. Kuldeep Kavta & Arkopal K. Goswami, 2021. "A methodological framework for a priori selection of travel demand management package using fuzzy MCDM methods," Transportation, Springer, vol. 48(6), pages 3059-3084, December.
    16. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    17. Wen‐Hsien Tsai & Yu‐Wei Chou & Kuen‐Chang Lee & Wan‐Rung Lin & Elliott T.Y. Hwang, 2013. "Combining Decision Making Trial and Evaluation Laboratory with Analytic Network Process to Perform an Investigation of Information Technology Auditing and Risk Control in an Enterprise Resource Planni," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(2), pages 176-193, March.
    18. Jia Huang & Hu-Chen Liu & Chun-Yan Duan & Ming-Shun Song, 2022. "An improved reliability model for FMEA using probabilistic linguistic term sets and TODIM method," Annals of Operations Research, Springer, vol. 312(1), pages 235-258, May.
    19. Ngan, Sue Lin & How, Bing Shen & Teng, Sin Yong & Leong, Wei Dong & Loy, Adrian Chun Minh & Yatim, Puan & Promentilla, Michael Angelo B. & Lam, Hon Loong, 2020. "A hybrid approach to prioritize risk mitigation strategies for biomass polygeneration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Mohammad Khalilzadeh & Laleh Katoueizadeh & Edmundas Kazimieras Zavadskas, 2020. "Risk identification and prioritization in banking projects of payment service provider companies: an empirical study," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:649-:d:206729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.