IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v169y2018icp117-126.html
   My bibliography  Save this article

Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach

Author

Listed:
  • Faiella, Giuliana
  • Parand, Anam
  • Franklin, Bryony Dean
  • Chana, Prem
  • Cesarelli, Mario
  • Stanton, Neville A.
  • Sevdalis, Nick

Abstract

Healthcare Failure Mode and Effect Analysis (HFMEA) is a systematic risk assessment method derived from high risk industries to prospectively examine complex healthcare processes. Like most methods, HFMEA has strengths and weaknesses. In this paper we provide a review of HFMEA's limitations and we introduce an expanded version of traditional HFMEA, with the addition of two safety management techniques: Systematic Human Error Reduction and Prediction Analysis (SHERPA) and Systems-Theoretic Accident Model and Processes – Systems-Theoretic Process Analysis (STAMP-STPA). The combination of the three methodologies addresses significant HFMEA limitations. To test the viability of the proposed hybrid technique, we applied it to assess the potential failures in the process of administration of medication in the home setting. Our findings suggest that it is both a viable and effective tool to supplement the analysis of failures and their causes. We also found that the hybrid technique was effective in identifying corrective actions to address human errors and detecting failures of the constraints necessary to maintain safety.

Suggested Citation

  • Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
  • Handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:117-126
    DOI: 10.1016/j.ress.2017.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201630744X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saleh, J.H. & Marais, K.B. & Bakolas, E. & Cowlagi, R.V., 2010. "Highlights from the literature on accident causation and system safety: Review of major ideas, recent contributions, and challenges," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1105-1116.
    2. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    3. Abrahamsen, Håkon Bjorheim & Abrahamsen, Eirik Bjorheim & Høyland, Sindre, 2016. "On the need for revising healthcare failure mode and effect analysis for assessing potential for patient harm in healthcare processes," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 160-168.
    4. Mahajan, Haneet Singh & Bradley, Thomas & Pasricha, Sudeep, 2017. "Application of systems theoretic process analysis to a lane keeping assist system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 177-183.
    5. Neville A. Stanton & Mark S. Young, 1999. "What price ergonomics?," Nature, Nature, vol. 399(6733), pages 197-198, May.
    6. Leveson, Nancy, 2015. "A systems approach to risk management through leading safety indicators," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 17-34.
    7. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    8. Huang, Jia & Li, Zhaojun(Steven) & Liu, Hu-Chen, 2017. "New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 302-309.
    9. Carmignani, Gionata, 2009. "An integrated structural framework to cost-based FMECA: The priority-cost FMECA," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 861-871.
    10. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shin, Sung-Min & Lee, Sang Hun & Shin, Seung Ki, 2022. "A novel approach for quantitative importance analysis of safety DI&C systems in the nuclear field," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Jibiao Zhou & Xinhua Mao & Yiting Wang & Minjie Zhang & Sheng Dong, 2019. "Risk Assessment in Urban Large-Scale Public Spaces Using Dempster-Shafer Theory: An Empirical Study in Ningbo, China," IJERPH, MDPI, vol. 16(16), pages 1-28, August.
    3. Jian Wu & Jun Chen & Wei Liu & Yujia Liu & Changyong Liang & Mingshuo Cao, 2022. "A Calibrated Individual Semantic Based Failure Mode and Effect Analysis and Its Application in Industrial Internet Platform," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    4. Antonello, Federico & Buongiorno, Jacopo & Zio, Enrico, 2022. "A methodology to perform dynamic risk assessment using system theory and modeling and simulation: Application to nuclear batteries," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Jing Xiao & Xiuli Wang & Hengjie Zhang, 2022. "Exploring the Ordinal Classifications of Failure Modes in the Reliability Management: An Optimization-Based Consensus Model with Bounded Confidences," Group Decision and Negotiation, Springer, vol. 31(1), pages 49-80, February.
    6. Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
    7. Juntao Zhang & Hyungju Kim & Yiliu Liu & Mary Ann Lundteigen, 2019. "Combining system-theoretic process analysis and availability assessment: A subsea case study," Journal of Risk and Reliability, , vol. 233(4), pages 520-536, August.
    8. Zhou, Ying & Li, Chenshuang & Zhou, Cheng & Luo, Hanbin, 2018. "Using Bayesian network for safety risk analysis of diaphragm wall deflection based on field data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 152-167.
    9. Shin, Sung-Min & Lee, Sang Hun & Shin, Seung Ki & Jang, Inseok & Park, Jinkyun, 2021. "STPA-Based Hazard and Importance Analysis on NPP Safety I&C Systems Focusing on Human–System Interactions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Ariadna Linda Bednarz & Marta Borkowska-Bierć & Marek Matejun, 2021. "Managerial Responses to the Onset of the COVID-19 Pandemic in Healthcare Organizations Project Management," IJERPH, MDPI, vol. 18(22), pages 1-25, November.
    11. Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Wu, Chao & Huang, Lang, 2019. "A new accident causation model based on information flow and its application in Tianjin Port fire and explosion accident," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 73-85.
    3. Antonovsky, A. & Pollock, C. & Straker, L., 2016. "System reliability as perceived by maintenance personnel on petroleum production facilities," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 58-65.
    4. Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Ahmad Dehghan Nejad & Amirhosein Bahramzadeh, 2021. "The competency of organizational safety control structure; a framework for evaluation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1180-1198, December.
    6. Read, G.J.M. & Naweed, A. & Salmon, P.M., 2019. "Complexity on the rails: A systems-based approach to understanding safety management in rail transport," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 352-365.
    7. Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
    8. Thieme, Christoph A. & Utne, Ingrid B., 2017. "Safety performance monitoring of autonomous marine systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 264-275.
    9. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
    10. Zhen Wang & Rongxi Wang & Wei Deng & Yong Zhao, 2022. "An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System," Energies, MDPI, vol. 15(5), pages 1-25, March.
    11. Kandemir, Cagatay & Celik, Metin, 2021. "Determining the error producing conditions in marine engineering maintenance and operations through HFACS-MMO," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    12. Meng, Xiangkun & Li, Xinhong & Wang, Weigang & Song, Guozheng & Chen, Guoming & Zhu, Jingyu, 2021. "A novel methodology to analyze accident path in deepwater drilling operation considering uncertain information," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Juntao Zhang & Hyungju Kim & Yiliu Liu & Mary Ann Lundteigen, 2019. "Combining system-theoretic process analysis and availability assessment: A subsea case study," Journal of Risk and Reliability, , vol. 233(4), pages 520-536, August.
    14. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Abrahamsen, HÃ¥kon Bjorheim, 2020. "A New Framework To Idenitfy And Assess Hidden Assumptions In The Background Knowledge Of A Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    15. Pence, Justin & Sakurahara, Tatsuya & Zhu, Xuefeng & Mohaghegh, Zahra & Ertem, Mehmet & Ostroff, Cheri & Kee, Ernie, 2019. "Data-theoretic methodology and computational platform to quantify organizational factors in socio-technical risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 240-260.
    16. Li, Ying & Liu, Peide & Li, Gang, 2023. "An asymmetric cost consensus based failure mode and effect analysis method with personalized risk attitude information," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Mahajan, Haneet Singh & Bradley, Thomas & Pasricha, Sudeep, 2017. "Application of systems theoretic process analysis to a lane keeping assist system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 177-183.
    18. Wang, Qun & Jia, Guozhu & Jia, Yuning & Song, Wenyan, 2021. "A new approach for risk assessment of failure modes considering risk interaction and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    20. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:117-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.