IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4236-d284265.html
   My bibliography  Save this article

Dynamic Mechanical and Microstructural Properties of Outburst-Prone Coal Based on Compressive SHPB Tests

Author

Listed:
  • Zhenhua Yang

    (College of Mining, Liaoning Technical University, Fuxin 123000, China)

  • Chaojun Fan

    (College of Mining, Liaoning Technical University, Fuxin 123000, China)

  • Tianwei Lan

    (College of Mining, Liaoning Technical University, Fuxin 123000, China
    State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Sheng Li

    (College of Mining, Liaoning Technical University, Fuxin 123000, China)

  • Guifeng Wang

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Mingkun Luo

    (College of Mining, Liaoning Technical University, Fuxin 123000, China
    Center of Technology, Shanxi Lu’an Mining (Group) Limited Liability Company, Changzhi 046299, China)

  • Hongwei Zhang

    (College of Mining, Liaoning Technical University, Fuxin 123000, China)

Abstract

Understanding the dynamic mechanical behaviors and microstructural properties of outburst-prone coal is significant for preventing coal and gas outbursts during underground mining. In this paper, the split Hopkinson pressure bar (SHPB) tests were completed to study the strength and micro-structures of outburst-prone coal subjected to compressive impact loading. Two suites of coals—outburst-prone and outburst-resistant—were selected as the experimental specimens. The characteristics of dynamic strength, failure processes, fragment distribution, and microstructure evolution were analyzed based on the obtained stress-strain curves, failed fragments, and scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) images. Results showed that the dynamic compressive strength inclined linearly with the applied strain rate approximately. The obtained dynamic stress-strain responses could be represented by a typical curve with stages of compression, linear elasticity, microcrack evolution, unstable crack propagation, and rapid rapture. When the loading rate was relatively low, fragments fell in tension. With an increase in loading rates, the fragments fell predominantly in shear. The equivalent particle size of coal fragments decreased with the applied strain rate. The Uniaxial compressive strength (UCS) of outburst-prone coal was smaller than that of resistant coal, resulting in its smaller equivalent particle size of coal fragments. Moreover, the impact loading accelerated the propagation of fractures within the specimen, which enhanced the connectivity within the porous coal. The outburst-prone coal with behaviors of low strength and sudden increase of permeability could easily initiate gas outbursts.

Suggested Citation

  • Zhenhua Yang & Chaojun Fan & Tianwei Lan & Sheng Li & Guifeng Wang & Mingkun Luo & Hongwei Zhang, 2019. "Dynamic Mechanical and Microstructural Properties of Outburst-Prone Coal Based on Compressive SHPB Tests," Energies, MDPI, vol. 12(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4236-:d:284265
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Xue & Feng Gao & Xingguang Liu, 2015. "Effect of damage evolution of coal on permeability variation and analysis of gas outburst hazard with coal mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 999-1013, November.
    2. Kaiwen Xia & Sheng Huang & Ajay Kumar Jha, 2010. "Dynamic Tensile Test of Coal, Shale and Sandstone Using Split Hopkinson Pressure Bar: A Tool for Blast and Impact Assessment," International Journal of Geotechnical Earthquake Engineering (IJGEE), IGI Global, vol. 1(2), pages 24-37, July.
    3. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    4. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    5. Skoczylas Norbert & Anna Pajdak & Katarzyna Kozieł & Leticia Teixeira Palla Braga, 2019. "Methane Emission during Gas and Rock Outburst on the Basis of the Unipore Model," Energies, MDPI, vol. 12(10), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pinghe Sun & Meng Han & Han Cao & Weisheng Liu & Shaohe Zhang & Junyi Zhu, 2020. "Development and Performance Evaluation of Solid-Free Drilling Fluid for CBM Reservoir Drilling in Central Hunan," Energies, MDPI, vol. 13(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Wei & Wang, Yihan & Yan, Fazhi & Si, Guangyao & Lin, Baiquan, 2022. "Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis," Energy, Elsevier, vol. 254(PA).
    2. Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    3. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    4. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    5. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    6. Ziwen Li & Hongjin Yu & Yansong Bai, 2022. "Numerical Simulation of CO 2 -ECBM Based on Multi-Physical Field Coupling Model," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    7. Haijun Guo & Zhixiang Cheng & Kai Wang & Baolin Qu & Liang Yuan & Chao Xu, 2020. "Coal permeability evolution characteristics: Analysis under different loading conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 347-363, April.
    8. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Wang, Lei & Meng, Qiaorong & Lu, Yang & Gao, Qiang, 2023. "Comparative study on the chemical structure characteristics of lump coal during superheated water vapor pyrolysis and conventional pyrolysis," Energy, Elsevier, vol. 276(C).
    9. Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
    10. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    11. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
    12. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    13. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Yu, Xu & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2023. "Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery," Energy, Elsevier, vol. 270(C).
    14. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    15. Xiangyu Wang & Hongwei Zhou & Lei Zhang & Wei Hou & Jianchao Cheng, 2022. "Dual-Zone Gas Flow Characteristics for Gas Drainage Considering Anomalous Diffusion," Energies, MDPI, vol. 15(18), pages 1-16, September.
    16. Wang, Kai & Wang, Yanhai & Xu, Chao & Guo, Haijun & Xu, Zhiyuan & Liu, Yifu & Dong, Huzi & Ju, Yang, 2023. "Modeling of multi-field gas desorption-diffusion in coal: A new insight into the bidisperse model," Energy, Elsevier, vol. 267(C).
    17. Yuannan Zheng & Qingzhao Li & Guiyun Zhang & Yang Zhao & Xinxin Liu, 2021. "Evaluation of separation effect for CH4 enrichment from coalbed methane (CBM) under the synergistic action of temperature and pressure based on IAST theory," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 590-605, June.
    18. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    19. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    20. Liu, Jia & Xue, Yi & Fu, Yong & Yao, Kai & Liu, Jianqiang, 2023. "Numerical investigation on microwave-thermal recovery of shale gas based on a fully coupled electromagnetic, heat transfer, and multiphase flow model," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4236-:d:284265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.