IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p102-d193917.html
   My bibliography  Save this article

Research on Key Parameters Operation Range of Central Air Conditioning Based on Binary K-Means and Apriori Algorithm

Author

Listed:
  • Liangwen Yan

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)

  • Fengfeng Qian

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)

  • Wei Li

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)

Abstract

As the energy-saving control of central air conditioning has been widely applied in modern architecture, research of real-time optimal control based on historical data and identification of its optimal control strategies are of great importance for reducing energy wasting of buildings. However, due to the property of easily falling into local optimum, conventional k-means approach cannot achieve the goal of real-time optimal control, we therefore propose an innovative binary k-means clustering algorithm which is used to adjust the target value of temperature difference (TD) in the control system of chilled water and cooling water of central air conditioning system (CACS). Thanks to the clustering control, among the 304 test data, the coefficient of performance (COP) of 211 sets of data, which accounted for 69.41%, are higher than those of the traditional control method. In the simulation system, the COP of 191 sets of data, which accounted for 62.83%, are higher than those of traditional control methods, achieving better energy efficiency. To achieve the goal of identify potential energy-saving control strategies, the Apriori algorithm is proposed to correlate the key parameters and energy consumption efficiency of the CACS. The results show when the chilled water temperature difference (CWTD) > 2.0 °C and the cooling water temperature difference (COWTD) > 2.4 °C, some rules are discovered as follows: 1. The probability of a larger system COP will increase if the CWTD is set lower than the third quartile value or the COWTD is set lower than the first quartile value. 2. The probability of a larger system COP will also increase if the CTWD is set lower than the first quartile and the COWTD is set between the first and the third quartile. These underlying regularity is useful for technicians to adjust the control parameters of the equipment, to improve energy efficiency and to reduce energy consumption.

Suggested Citation

  • Liangwen Yan & Fengfeng Qian & Wei Li, 2018. "Research on Key Parameters Operation Range of Central Air Conditioning Based on Binary K-Means and Apriori Algorithm," Energies, MDPI, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:102-:d:193917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Xiupeng & Kusiak, Andrew & Li, Mingyang & Tang, Fan & Zeng, Yaohui, 2015. "Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance," Energy, Elsevier, vol. 83(C), pages 294-306.
    2. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    3. Panagiotis Kontogiorgos & Nikolaos Chrysanthopoulos & George P. Papavassilopoulos, 2018. "A Mixed-Integer Programming Model for Assessing Energy-Saving Investments in Domestic Buildings under Uncertainty," Energies, MDPI, vol. 11(4), pages 1-14, April.
    4. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    5. Wen-Jun Tang & Hong-Tzer Yang, 2018. "Data Mining and Neural Networks Based Self-Adaptive Protection Strategies for Distribution Systems with DGs and FCLs," Energies, MDPI, vol. 11(2), pages 1-13, February.
    6. Xiaoyu Li & Kai Song & Guo Wei & Rengui Lu & Chunbo Zhu, 2015. "A Novel Grouping Method for Lithium Iron Phosphate Batteries Based on a Fractional Joint Kalman Filter and a New Modified K-Means Clustering Algorithm," Energies, MDPI, vol. 8(8), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsa Chaerun Nisa & Yean-Der Kuan & Chin-Chang Lai, 2021. "Chiller Optimization Using Data Mining Based on Prediction Model, Clustering and Association Rule Mining," Energies, MDPI, vol. 14(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    2. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    3. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    4. Ahmad, Tanveer & Chen, Huanxin & Huang, Ronggeng & Yabin, Guo & Wang, Jiangyu & Shair, Jan & Azeem Akram, Hafiz Muhammad & Hassnain Mohsan, Syed Agha & Kazim, Muhammad, 2018. "Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment," Energy, Elsevier, vol. 158(C), pages 17-32.
    5. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    6. Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
    7. Zhao, Deyin & Zhong, Ming & Zhang, Xu & Su, Xing, 2016. "Energy consumption predicting model of VRV (Variable refrigerant volume) system in office buildings based on data mining," Energy, Elsevier, vol. 102(C), pages 660-668.
    8. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    9. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
    11. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    12. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    13. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
    14. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    15. Wang, Huilong & Ding, Zhikun & Tang, Rui & Chen, Yongbao & Fan, Cheng & Wang, Jiayuan, 2022. "A machine learning-based control strategy for improved performance of HVAC systems in providing large capacity of frequency regulation service," Applied Energy, Elsevier, vol. 326(C).
    16. Kasım Zor & Özgür Çelik & Oğuzhan Timur & Ahmet Teke, 2020. "Short-Term Building Electrical Energy Consumption Forecasting by Employing Gene Expression Programming and GMDH Networks," Energies, MDPI, vol. 13(5), pages 1-24, March.
    17. Tran, Duc-Hoc & Luong, Duc-Long & Chou, Jui-Sheng, 2020. "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings," Energy, Elsevier, vol. 191(C).
    18. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    19. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
    20. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:102-:d:193917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.