IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p1973-d160749.html
   My bibliography  Save this article

A Study on the Improvement of Smart Grid Security Performance and Blockchain Smart Grid Perspective

Author

Listed:
  • Seong-Kyu Kim

    (School of Electronic and Electrical Engineering, Sungkyunkwan University, Seoul 110-745, Korea
    Mytsystem, Seoul 06149, Korea
    Puroom, Seoul 06149, Korea)

  • Jun-Ho Huh

    (Department of Software, Catholic University of Pusan, Busan 46252, Korea)

Abstract

Interest in green energy has increased worldwide. Therefore, smart grid projects to form a more efficient and eco-friendly intelligent grid by combining information technology (IT) technology with the existing grid are actively being conducted. In Korea, a national-level smart grid project road map has been confirmed, and an action plan has been prepared. Despite such actions, there may appear various threat scenarios in the application of the IT to the grid as a reverse function. Security technology is a measure to respond to such threats effectively. The security technology of a smart grid is an important factor that is directly related to the success or failure of the smart grid project. A smart grid is a new type of next-generation grid born of the fusion with IT. If the smart grid, the backbone of the power supply, is damaged by a cyberattack, it may cause huge damage, such as a nationwide power outage. In fact, there is an increasing cyberattack threat, and the cyber security threat to the smart grid is not insignificant. Furthermore, the legal system related to information protection is also important in order to support it systematically. In this paper, the necessity of the smart grid is examined, and the industry’s initiative toward the smart grid security threat and threat response is examined. In this paper, we also suggest a security plan of applying Rainbowchain, the Blockchain technology, to the smart grid and energy exchange. We propose achieving superior performance and security functions by using Rainbowchain, which contains seven authentication techniques among existing Blockchain technologies, and propose the ecosystem and architecture necessary for its application.

Suggested Citation

  • Seong-Kyu Kim & Jun-Ho Huh, 2018. "A Study on the Improvement of Smart Grid Security Performance and Blockchain Smart Grid Perspective," Energies, MDPI, vol. 11(8), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1973-:d:160749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/1973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/1973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    2. Spiros Livieratos & Vasiliki-Emmanouela Vogiatzaki & Panayotis G. Cottis, 2013. "A Generic Framework for the Evaluation of the Benefits Expected from the Smart Grid," Energies, MDPI, vol. 6(2), pages 1-21, February.
    3. Laihyuk Park & Yongwoon Jang & Hyoungchel Bae & Juho Lee & Chang Yun Park & Sungrae Cho, 2017. "Automated Energy Scheduling Algorithms for Residential Demand Response Systems," Energies, MDPI, vol. 10(9), pages 1-17, September.
    4. Chen, Yan, 2018. "Blockchain tokens and the potential democratization of entrepreneurship and innovation," Business Horizons, Elsevier, vol. 61(4), pages 567-575.
    5. Kris Kessels & Carolien Kraan & Ludwig Karg & Simone Maggiore & Pieter Valkering & Erik Laes, 2016. "Fostering Residential Demand Response through Dynamic Pricing Schemes: A Behavioural Review of Smart Grid Pilots in Europe," Sustainability, MDPI, vol. 8(9), pages 1-21, September.
    6. Naveed Ul Hassan & Muhammad Adeel Pasha & Chau Yuen & Shisheng Huang & Xiumin Wang, 2013. "Impact of Scheduling Flexibility on Demand Profile Flatness and User Inconvenience in Residential Smart Grid System," Energies, MDPI, vol. 6(12), pages 1-28, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seong-Kyu Kim & Ung-Mo Kim & Jun-Ho Huh, 2019. "A Study on Improvement of Blockchain Application to Overcome Vulnerability of IoT Multiplatform Security," Energies, MDPI, vol. 12(3), pages 1-29, January.
    2. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    3. Georgios Lampropoulos, 2024. "Blockchain in Smart Grids: A Bibliometric Analysis and Scientific Mapping Study," J, MDPI, vol. 7(1), pages 1-29, January.
    4. Jien Song & Yang Yang & Jie Mei & Gaofeng Zhou & Weiqiang Qiu & Yixing Wang & Lu Xu & Yanran Liu & Jinyu Jiang & Zhenyue Chu & Weitao Tan & Zhenzhi Lin, 2022. "Proxy Re-Encryption-Based Traceability and Sharing Mechanism of the Power Material Data in Blockchain Environment," Energies, MDPI, vol. 15(7), pages 1-19, April.
    5. Firuz Kamalov & Behrouz Pourghebleh & Mehdi Gheisari & Yang Liu & Sherif Moussa, 2023. "Internet of Medical Things Privacy and Security: Challenges, Solutions, and Future Trends from a New Perspective," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    6. Seongjoon Park & Hwangnam Kim, 2019. "DAG-Based Distributed Ledger for Low-Latency Smart Grid Network," Energies, MDPI, vol. 12(18), pages 1-22, September.
    7. Vidya Krishnan Mololoth & Saguna Saguna & Christer Åhlund, 2023. "Blockchain and Machine Learning for Future Smart Grids: A Review," Energies, MDPI, vol. 16(1), pages 1-39, January.
    8. Abdul Conteh & Mohammed Elsayed Lotfy & Oludamilare Bode Adewuyi & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Demand Response Economic Assessment with the Integration of Renewable Energy for Developing Electricity Markets," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    9. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    10. Gangjun Gong & Zhening Zhang & Xinyu Zhang & Nawaraj Kumar Mahato & Lin Liu & Chang Su & Haixia Yang, 2020. "Electric Power System Operation Mechanism with Energy Routers Based on QoS Index under Blockchain Architecture," Energies, MDPI, vol. 13(2), pages 1-22, January.
    11. Sungwook Eom & Jun-Ho Huh, 2018. "The Opening Capability for Security against Privacy Infringements in the Smart Grid Environment," Mathematics, MDPI, vol. 6(10), pages 1-14, October.
    12. Wonchan Lee & Chang-Sung Jeong, 2022. "Low Power Sensor Location Prediction Using Spatial Dimension Transformation and Pattern Recognition," Energies, MDPI, vol. 15(12), pages 1-20, June.
    13. Tehseen Mazhar & Hafiz Muhammad Irfan & Sunawar Khan & Inayatul Haq & Inam Ullah & Muhammad Iqbal & Habib Hamam, 2023. "Analysis of Cyber Security Attacks and Its Solutions for the Smart grid Using Machine Learning and Blockchain Methods," Future Internet, MDPI, vol. 15(2), pages 1-37, February.
    14. Amitkumar V. Jha & Bhargav Appasani & Deepak Kumar Gupta & Bharati S. Ainapure & Nicu Bizon, 2023. "A Blockchain-Enabled Approach for Enhancing Synchrophasor Measurement in Smart Grid 3.0," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    15. Alexandre Lucas & Dimitrios Geneiatakis & Yannis Soupionis & Igor Nai-Fovino & Evangelos Kotsakis, 2021. "Blockchain Technology Applied to Energy Demand Response Service Tracking and Data Sharing," Energies, MDPI, vol. 14(7), pages 1-17, March.
    16. Ferdaws Ezzi & Anis Jarboui & Khaireddine Mouakhar, 2023. "Exploring the Relationship Between Blockchain Technology and Corporate Social Responsibility Performance: Empirical Evidence from European Firms," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(2), pages 1227-1248, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    2. Giuliano Sansone & Flavio Santalucia & Davide Viglialoro & Paolo Landoni, 2023. "Blockchain for social good and stakeholder engagement: Evidence from a case study," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2182-2193, September.
    3. Garg, Poonam & Gupta, Bhumika & Chauhan, Ajay Kumar & Sivarajah, Uthayasankar & Gupta, Shivam & Modgil, Sachin, 2021. "Measuring the perceived benefits of implementing blockchain technology in the banking sector," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    4. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    5. Weking, Jörg & Desouza, Kevin C. & Fielt, Erwin & Kowalkiewicz, Marek, 2023. "Metaverse-enabled entrepreneurship," Journal of Business Venturing Insights, Elsevier, vol. 19(C).
    6. Ferdinand Thies & Sören Wallbach & Michael Wessel & Markus Besler & Alexander Benlian, 2022. "Initial coin offerings and the cryptocurrency hype - the moderating role of exogenous and endogenous signals," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1691-1705, September.
    7. Magnus Schückes & Tobias Gutmann, 2021. "Why do startups pursue initial coin offerings (ICOs)? The role of economic drivers and social identity on funding choice," Small Business Economics, Springer, vol. 57(2), pages 1027-1052, August.
    8. Maurizio Massaro & Francesca Dal Mas & Charbel Jose Chiappetta Jabbour & Carlo Bagnoli, 2020. "Crypto‐economy and new sustainable business models: Reflections and projections using a case study analysis," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2150-2160, September.
    9. Mahmoona Khalil & Kausar Fiaz Khawaja & Muddassar Sarfraz, 2022. "The adoption of blockchain technology in the financial sector during the era of fourth industrial revolution: a moderated mediated model," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2435-2452, August.
    10. Giudici, Giancarlo & Giuffra Moncayo, Giancarlo & Martinazzi, Stefano, 2020. "The role of advisors’ centrality in the success of Initial Coin Offerings," Journal of Economics and Business, Elsevier, vol. 112(C).
    11. Queiroz, Maciel M. & Fosso Wamba, Samuel, 2019. "Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA," International Journal of Information Management, Elsevier, vol. 46(C), pages 70-82.
    12. Tandon, Anushree & Kaur, Puneet & Mäntymäki, Matti & Dhir, Amandeep, 2021. "Blockchain applications in management: A bibliometric analysis and literature review," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    13. Lee, Jei Young, 2019. "A decentralized token economy: How blockchain and cryptocurrency can revolutionize business," Business Horizons, Elsevier, vol. 62(6), pages 773-784.
    14. Byeongtae Ahn, 2022. "Implementation and Early Adoption of an Ethereum-Based Electronic Voting System for the Prevention of Fraudulent Voting," Sustainability, MDPI, vol. 14(5), pages 1-16, March.
    15. Belém Barbosa & José Ramón Saura & Dag Bennett, 2024. "How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses," The Journal of Technology Transfer, Springer, vol. 49(1), pages 69-103, February.
    16. Joon-Seok Kim & Nina Shin, 2019. "The Impact of Blockchain Technology Application on Supply Chain Partnership and Performance," Sustainability, MDPI, vol. 11(21), pages 1-17, November.
    17. Anton Miglo, 2022. "Choice between IEO and ICO: Speed vs. Liquidity vs. Risk," FinTech, MDPI, vol. 1(3), pages 1-18, September.
    18. Shengmin Tan & Xu Wang & Chuanwen Jiang, 2019. "Privacy-Preserving Energy Scheduling for ESCOs Based on Energy Blockchain Network," Energies, MDPI, vol. 12(8), pages 1-16, April.
    19. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    20. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1973-:d:160749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.