IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1735-d155775.html
   My bibliography  Save this article

Effects of Electrode Composition and Thickness on the Mechanical Performance of a Solid Oxide Fuel Cell

Author

Listed:
  • Xiurong Fang

    (Department of Physics, University of Science and Technology of China, No. 96, JinZhai Road, Hefei 230026, China)

  • Jiang Zhu

    (Department of Physics, University of Science and Technology of China, No. 96, JinZhai Road, Hefei 230026, China)

  • Zijing Lin

    (Department of Physics, University of Science and Technology of China, No. 96, JinZhai Road, Hefei 230026, China
    Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, No. 96, JinZhai Road, Hefei 230026, China
    CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, No. 96, JinZhai Road, Hefei 230026, China)

Abstract

Mechanical damage is a major factor limiting the long-term stability of solid oxide fuel cells (SOFCs). Here, the mechanical stability of planar SOFCs consisting of Ni-YSZ anode/YSZ electrolyte/LSM-YSZ cathode (Ni=Nickel, YSZ=yttria-stabilized zirconia, LSM=lanthanum strontium manganite) is analyzed by a structural mechanics model with composition dependent mechanical properties. Influencing factors considered include: the Ni and LSM volume fractions, the thicknesses of anode, cathode and electrolyte layers, and the cell types of anode-, cathode-, and electrolyte-supported designs. It is found that (i) the anode failure probability increases with the Ni content. However, SOFCs remain mechanically safe if the Ni volume fraction is below 65%. (ii) An LSM volume fraction of over 40% is required to maintain the mechanical integrity of cathode. (iii) For an anode-supported cell with a 20 μm thick electrolyte, the anode thickness should be more than 0.5 mm to be mechanically stable. (iv) The anode-supported cell is found to be mechanically safer than that of the electrolyte-supported cell.

Suggested Citation

  • Xiurong Fang & Jiang Zhu & Zijing Lin, 2018. "Effects of Electrode Composition and Thickness on the Mechanical Performance of a Solid Oxide Fuel Cell," Energies, MDPI, vol. 11(7), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1735-:d:155775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timurkutluk, Bora & Timurkutluk, Cigdem & Mat, Mahmut D. & Kaplan, Yuksel, 2016. "A review on cell/stack designs for high performance solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1101-1121.
    2. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daifen Chen & Biao Hu & Kai Ding & Cheng Yan & Liu Lu, 2018. "The Geometry Effect of Cathode/Anode Areas Ratio on Electrochemical Performance of Button Fuel Cell Using Mixed Conducting Materials," Energies, MDPI, vol. 11(7), pages 1-16, July.
    2. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Jin, Xinfang & Ku, Anthony & Ohara, Brandon & Huang, Kevin & Singh, Surinder, 2021. "Performance analysis of a 550MWe solid oxide fuel cell and air turbine hybrid system powered by coal-derived syngas," Energy, Elsevier, vol. 222(C).
    4. Zheng Li & Guogang Yang & Qiuwan Shen & Shian Li & Hao Wang & Jiadong Liao & Ziheng Jiang & Guoling Zhang, 2022. "Transient Multi-Physics Modeling and Performance Degradation Evaluation of Direct Internal Reforming Solid Oxide Fuel Cell Focusing on Carbon Deposition Effect," Energies, MDPI, vol. 16(1), pages 1-20, December.
    5. Tomasz A. Prokop & Grzegorz Brus & Shinji Kimijima & Janusz S. Szmyd, 2020. "Thin Solid Film Electrolyte and Its Impact on Electrode Polarization in Solid Oxide Fuel Cells Studied by Three-Dimensional Microstructure-Scale Numerical Simulation," Energies, MDPI, vol. 13(19), pages 1-14, October.
    6. Siyu Lu & Man Zhang & Jie Wu & Wei Kong, 2022. "Performance Investigation on Mono-Block-Layer Build Type Solid Oxide Fuel Cells with a Vertical Rib Design," Energies, MDPI, vol. 15(3), pages 1-12, January.
    7. Jiangtao Feng & Jiaqi Geng & Hangyu She & Tao Zhang & Bo Chi & Jian Pu, 2022. "Thermal Stress Simulation and Structure Failure Analyses of Nitrogen–Oxygen Sensors under a Gradual Temperature Field," Energies, MDPI, vol. 15(8), pages 1-11, April.
    8. Guo, Meiting & Ru, Xiao & Yang, Lin & Ni, Meng & Lin, Zijing, 2022. "Effects of methane steam reforming on the mechanical stability of solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    3. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.
    4. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    5. Li, Haolong & Wei, Wei & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2023. "Identification of internal polarization dynamics for solid oxide fuel cells investigated by electrochemical impedance spectroscopy and distribution of relaxation times," Energy, Elsevier, vol. 267(C).
    6. Ferreira, Victor J. & Wolff, Deidre & Hornés, Aitor & Morata, Alex & Torrell, M. & Tarancón, Albert & Corchero, Cristina, 2021. "5 kW SOFC stack via 3D printing manufacturing: An evaluation of potential environmental benefits," Applied Energy, Elsevier, vol. 291(C).
    7. Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
    8. Jee Min Park & Dae Yun Kim & Jong Dae Baek & Yong-Jin Yoon & Pei-Chen Su & Seong Hyuk Lee, 2018. "Effect of Electrolyte Thickness on Electrochemical Reactions and Thermo-Fluidic Characteristics inside a SOFC Unit Cell," Energies, MDPI, vol. 11(3), pages 1-15, February.
    9. Abdellah Essaghouri & Zezhi Zeng & Bingguo Zhao & Changkun Hao & Yuping Qian & Weilin Zhuge & Yangjun Zhang, 2022. "Effects of Radial and Circumferential Flows on Power Density Improvements of Tubular Solid Oxide Fuel Cells," Energies, MDPI, vol. 15(19), pages 1-21, September.
    10. Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
    11. Hedayat, Nader & Du, Yanhai & Ilkhani, Hoda, 2017. "Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1221-1239.
    12. Kamalimeera, N. & Kirubakaran, V., 2021. "Prospects and restraints in biogas fed SOFC for rural energization: A critical review in indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Promsen, Mungmuang & Komatsu, Yosuke & Sciazko, Anna & Kaneko, Shozo & Shikazono, Naoki, 2020. "Feasibility study on saturated water cooled solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 279(C).
    14. Mehran, Muhammad Taqi & Khan, Muhammad Zubair & Song, Rak-Hyun & Lim, Tak-Hyoung & Naqvi, Muhammad & Raza, Rizwan & Zhu, Bin & Hanif, Muhammad Bilal, 2023. "A comprehensive review on durability improvement of solid oxide fuel cells for commercial stationary power generation systems," Applied Energy, Elsevier, vol. 352(C).
    15. Abdellah Essaghouri & Zezhi Zeng & Bingguo Zhao & Changkun Hao & Yuping Qian & Weilin Zhuge & Yangjun Zhang, 2022. "Influence of Radial Flows on Power Density and Gas Stream Pressure Drop of Tubular Solid Oxide Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-21, October.
    16. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi, 2017. "Numerical investigations to determine the optimal operating conditions for 1 kW-class flat-tubular solid oxide fuel cell stack," Energy, Elsevier, vol. 141(C), pages 673-691.
    17. Promsen, Mungmuang & Komatsu, Yosuke & Sciazko, Anna & Kaneko, Shozo & Shikazono, Naoki, 2023. "Power maximization and load range extension of solid oxide fuel cell operation by water cooling," Energy, Elsevier, vol. 276(C).
    18. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    19. Yang, Chao & Jing, Xiuhui & Miao, He & Wu, Yu & Shu, Chen & Wang, Jiatang & Zhang, Houcheng & Yu, Guojun & Yuan, Jinliang, 2020. "Analysis of effects of meso-scale reactions on multiphysics transport processes in rSOFC fueled with syngas," Energy, Elsevier, vol. 190(C).
    20. Tanaka, T. & Inui, Y. & Pongratz, G. & Subotić, V. & Hochenauer, C., 2021. "Numerical investigation on the performance and detection of an industrial-sized planar solid oxide fuel cell with fuel gas leakage," Applied Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1735-:d:155775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.