IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1266-d146499.html
   My bibliography  Save this article

Network Performance Optimization for Low-Voltage Power Line Communications

Author

Listed:
  • Ying Cui

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Xiaosheng Liu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Jian Cao

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Dianguo Xu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Low-voltage power line communication (LVPLC) medium access control protocols significantly affect home area networks performance. This study addresses poor network performance issues caused by asymmetric channels and noise interference by proposing the following: (i) an improved Q learning method for optimizing the improved artificial LVPLC cobweb, wherein the learning-based hybrid time-division-multiple-access (TDMA)/carrier-sense-multiple-access (CSMA) protocol, the asymmetrical network system, is modeled as a discrete Markov decision process, associates the station information using online trial-and-error learning, builds a routing table, periodically studies stations to choose a better forward path, and optimizes the shortest backbone cluster tree between the central coordinator and the stations, guaranteeing network stability; and (ii) an improved adaptive p -persistent CSMA game optimization method is proposed to optimize the improved artificial cobweb saturation throughput and access delay performance. The current state of the game (e.g., the number of competitive stations) for each station is estimated by the hidden Markov model. The station changes its equilibrium strategy based on the estimated number of active stations, which reduces the collision probability of data packets, optimizes channel transmission status, and increases performance by dynamically adjusting the probability p . An optimal saturation performance is achieved by finitely repeating the game. We present numerical results to validate our proposed approach.

Suggested Citation

  • Ying Cui & Xiaosheng Liu & Jian Cao & Dianguo Xu, 2018. "Network Performance Optimization for Low-Voltage Power Line Communications," Energies, MDPI, vol. 11(5), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1266-:d:146499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masood, Bilal & Baig, Sobia, 2016. "Standardization and deployment scenario of next generation NB-PLC technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1033-1047.
    2. Liang Zhang & Xiaosheng Liu & Yan Zhou & Dianguo Xu, 2013. "A Novel Routing Algorithm for Power Line Communication over a Low-voltage Distribution Network in a Smart Grid," Energies, MDPI, vol. 6(3), pages 1-18, March.
    3. Mohamed A. Ahmed & Yong Cheol Kang & Young-Chon Kim, 2015. "Communication Network Architectures for Smart-House with Renewable Energy Resources," Energies, MDPI, vol. 8(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Artale & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Riccardo Fiorelli & Salvatore Guaiana & Nicola Panzavecchia & Giovanni Tinè, 2019. "A New Coupling Solution for G3-PLC Employment in MV Smart Grids," Energies, MDPI, vol. 12(13), pages 1-23, June.
    2. Bilal Masood & Song Guobing & Jamel Nebhen & Ateeq Ur Rehman & Muhammad Naveed Iqbal & Iftikhar Rasheed & Mohit Bajaj & Muhammad Shafiq & Habib Hamam, 2022. "Investigation and Field Measurements for Demand Side Management Control Technique of Smart Air Conditioners located at Residential, Commercial, and Industrial Sites," Energies, MDPI, vol. 15(7), pages 1-23, March.
    3. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    4. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    5. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    6. Tarek A. Youssef & Ahmed T. Elsayed & Osama A. Mohammed, 2016. "Data Distribution Service-Based Interoperability Framework for Smart Grid Testbed Infrastructure," Energies, MDPI, vol. 9(3), pages 1-22, March.
    7. José Miguel Paredes-Parra & Antonio Javier García-Sánchez & Antonio Mateo-Aroca & Ángel Molina-García, 2019. "An Alternative Internet-of-Things Solution Based on LoRa for PV Power Plants: Data Monitoring and Management," Energies, MDPI, vol. 12(5), pages 1-20, March.
    8. Olamide Jogunola & Augustine Ikpehai & Kelvin Anoh & Bamidele Adebisi & Mohammad Hammoudeh & Haris Gacanin & Georgina Harris, 2017. "Comparative Analysis of P2P Architectures for Energy Trading and Sharing," Energies, MDPI, vol. 11(1), pages 1-20, December.
    9. Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
    10. Bilal Masood & M. Arif Khan & Sobia Baig & Guobing Song & Ateeq Ur Rehman & Saif Ur Rehman & Rao M. Asif & Muhammad Babar Rasheed, 2020. "Investigation of Deterministic, Statistical and Parametric NB-PLC Channel Modeling Techniques for Advanced Metering Infrastructure," Energies, MDPI, vol. 13(12), pages 1-20, June.
    11. Hosna Khajeh & Hannu Laaksonen & Amin Shokri Gazafroudi & Miadreza Shafie-khah, 2019. "Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review," Energies, MDPI, vol. 13(1), pages 1-19, December.
    12. Olamide Jogunola & Augustine Ikpehai & Kelvin Anoh & Bamidele Adebisi & Mohammad Hammoudeh & Sung-Yong Son & Georgina Harris, 2017. "State-Of-The-Art and Prospects for Peer-To-Peer Transaction-Based Energy System," Energies, MDPI, vol. 10(12), pages 1-28, December.
    13. Mario Collotta & Giovanni Pau, 2015. "A Solution Based on Bluetooth Low Energy for Smart Home Energy Management," Energies, MDPI, vol. 8(10), pages 1-23, October.
    14. Patricia Franco & José M. Martínez & Young-Chon Kim & Mohamed A. Ahmed, 2022. "A Cyber-Physical Approach for Residential Energy Management: Current State and Future Directions," Sustainability, MDPI, vol. 14(8), pages 1-33, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1266-:d:146499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.