IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1061-d143268.html
   My bibliography  Save this article

Value-Added Performance and Thermal Decomposition Characteristics of Dumped Food Waste Compost by Pyrolysis

Author

Listed:
  • Ye-Eun Lee

    (Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Korea
    Department of Construction environment Engineering, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon KS015, Korea)

  • Jun-Ho Jo

    (Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Korea)

  • I-Tae Kim

    (Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Korea)

  • Yeong-Seok Yoo

    (Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Korea
    Department of Construction environment Engineering, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon KS015, Korea)

Abstract

Food waste compost has a high Na content, which interferes with plant growth when used as a soil enhancer and therefore makes it difficult to use. And, compared to the amount of compost produced every day, the amount of consumption required in farms is smaller, and the rest is buried underground, which releases greenhouse gases and pollutes underground water. This research compared and analyzed thermal degradation behavior, calorific value, and gas spectrometry during the pyrolysis between food waste compost and sawdust to suggest producing food waste compost biochar by pyrolysis as a new alternative solution to utilize the massive amount of food waste compost. Biochar from pyrolysis of food waste compost had a high carbon content of 51% at 300 °C, and the carbon content decreased as the pyrolysis temperature increased. According to the thermogravimetric analysis (TGA) and derivative thermo-gravimetric (DTG) analysis results, compost showed the largest weight reduction from 240 °C to 365 °C. The weight reduction temperature ranges for compost and sawdust were quite similar. This occurred because food waste of the compost was degraded, but sawdust of compost remained nearly during the composting process. A gas chromatography and mass spectrometry (GC-MS) analysis found that the gases were fragments of fatty acids, protein, and hemi-cellulose. These results could also have been caused by degradation of microorganisms involved in the composting process, sawdust, and small fragments of food waste. In the calorific value of biochar, the highest value (24.33 kJ/g) was obtained 300 °C. At a low pyrolysis temperature, carbon fixation occurred easily since the food waste in compost was degraded by microorganism, and the volatilization of sawdust, which plays an important role in determining the calorific value, was also small. That is why the highest calorific value was shown at 300 °C, not 400 °C or 500 °C. Hence, it seems that food waste compost can be used as a promising alternative fuel at a low pyrolysis temperature, as other lignocellulosic refuse-derived fuels (RDF).

Suggested Citation

  • Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2018. "Value-Added Performance and Thermal Decomposition Characteristics of Dumped Food Waste Compost by Pyrolysis," Energies, MDPI, vol. 11(5), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1061-:d:143268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1061/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1061/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    2. Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2017. "Chemical Characteristics and NaCl Component Behavior of Biochar Derived from the Salty Food Waste by Water Flushing," Energies, MDPI, vol. 10(10), pages 1-15, October.
    3. Ye-Eun Lee & Jun-Ho Jo & Sun-Min Kim & Yeong-Seok Yoo, 2017. "Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing," Energies, MDPI, vol. 10(2), pages 1-13, February.
    4. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    5. Jun-Ho Jo & Seung-Soo Kim & Jae-Wook Shim & Ye-Eun Lee & Yeong-Seok Yoo, 2017. "Pyrolysis Characteristics and Kinetics of Food Wastes," Energies, MDPI, vol. 10(8), pages 1-13, August.
    6. Patrick Brassard & Stéphane Godbout & Vijaya Raghavan & Joahnn H. Palacios & Michèle Grenier & Dan Zegan, 2017. "The Production of Engineered Biochars in a Vertical Auger Pyrolysis Reactor for Carbon Sequestration," Energies, MDPI, vol. 10(3), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mejdi Jeguirim & Lionel Limousy, 2019. "Biomass Chars: Elaboration, Characterization and Applications II," Energies, MDPI, vol. 12(3), pages 1-6, January.
    2. Ye-Eun Lee & Dong-Chul Shin & Yoonah Jeong & I-Tae Kim & Yeong-Seok Yoo, 2019. "Effects of Pyrolysis Temperature and Retention Time on Fuel Characteristics of Food Waste Feedstuff and Compost for Co-Firing in Coal Power Plants," Energies, MDPI, vol. 12(23), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2018. "Influence of NaCl Concentration on Food-Waste Biochar Structure and Templating Effects," Energies, MDPI, vol. 11(9), pages 1-16, September.
    2. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    3. Alba Dieguez-Alonso & Axel Funke & Andrés Anca-Couce & Alessandro Girolamo Rombolà & Gerardo Ojeda & Jörg Bachmann & Frank Behrendt, 2018. "Towards Biochar and Hydrochar Engineering—Influence of Process Conditions on Surface Physical and Chemical Properties, Thermal Stability, Nutrient Availability, Toxicity and Wettability," Energies, MDPI, vol. 11(3), pages 1-26, February.
    4. Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.
    5. Mejdi Jeguirim & Lionel Limousy, 2017. "Biomass Chars: Elaboration, Characterization and Applications," Energies, MDPI, vol. 10(12), pages 1-7, December.
    6. Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2017. "Chemical Characteristics and NaCl Component Behavior of Biochar Derived from the Salty Food Waste by Water Flushing," Energies, MDPI, vol. 10(10), pages 1-15, October.
    7. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    8. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    9. Veknesh Arumugam & Ismail Abdullah & Irwan Syah Md Yusoff & Nor Liza Abdullah & Ramli Mohd Tahir & Ahadi Mohd Nasir & Ammar Ehsan Omar & Muhammad Heikal Ismail, 2021. "The Impact of COVID-19 on Solid Waste Generation in the Perspectives of Socioeconomic and People’s Behavior: A Case Study in Serdang, Malaysia," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    10. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    11. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    12. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    13. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    14. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    15. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    16. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    18. Kamel, Salah & El-Sattar, Hoda Abd & Vera, David & Jurado, Francisco, 2018. "Bioenergy potential from agriculture residues for energy generation in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 28-37.
    19. Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
    20. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1061-:d:143268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.