IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p947-d141352.html
   My bibliography  Save this article

Mitigating Household Energy Poverty through Energy Expenditure Affordability Algorithm in a Smart Grid

Author

Listed:
  • Omowunmi Mary Longe

    (Electrical and Electronics Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa)

  • Khmaies Ouahada

    (Electrical and Electronics Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa)

Abstract

One of the criteria for measuring household energy poverty is the percentage of the household’s income spent on energy expenses. In this work, an autonomous income-based energy scheduling demand side management (DSM) technique called energy expenditure affordability algorithm (EEAA) is proposed to ensure that household energy expenditure is below the nation’s approved energy expenditure threshold. The EEAA problem was formulated as a mixed integer linear programming (MILP) problem and verified with real household data collected from families living in bachelor flats in Johannesburg, South Africa. Consumer preferences and satisfaction were enhanced by using the dynamic time warping (DTW) technique to minimize the distance between nominal and EEAA load profiles. Furthermore, the effects of distributed energy generation (DEG) and distributed energy storage (DES) were also investigated in light of energy expenditure affordability for improved consumer-friendly and satisfying DSM. The EEAA-DSM technique is shown to reduce household energy expenditure below the energy expenditure threshold, offering energy expenditure affordability as well as utility grid peak demand reduction (PDR). Furthermore, grid reliability and sustainability, environmental preservation and gendered energy poverty are consequential benefits of the EEAA. It also offered the households considered an average financial savings from 12% to 82%, depending on the level of implementation of distributed storage and generation to the consumer’s local energy mix.

Suggested Citation

  • Omowunmi Mary Longe & Khmaies Ouahada, 2018. "Mitigating Household Energy Poverty through Energy Expenditure Affordability Algorithm in a Smart Grid," Energies, MDPI, vol. 11(4), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:947-:d:141352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/947/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/947/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoph Goebel & Vicky Cheng & Hans-Arno Jacobsen, 2017. "Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics," Energies, MDPI, vol. 10(7), pages 1-17, July.
    2. Maximilian Auffhammer & Catherine D. Wolfram, 2014. "Powering Up China: Income Distributions and Residential Electricity Consumption," American Economic Review, American Economic Association, vol. 104(5), pages 575-580, May.
    3. Saule Baurzhan & Glenn P. Jenkins, 2017. "On-Grid Solar PV versus Diesel Electricity Generation in Sub-Saharan Africa: Economics and GHG Emissions," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    4. Hafiz Majid Hussain & Nadeem Javaid & Sohail Iqbal & Qadeer Ul Hasan & Khursheed Aurangzeb & Musaed Alhussein, 2018. "An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid," Energies, MDPI, vol. 11(1), pages 1-28, January.
    5. Omowunmi Mary Longe & Khmaies Ouahada & Suvendi Rimer & Ashot N. Harutyunyan & Hendrik C. Ferreira, 2017. "Distributed Demand Side Management with Battery Storage for Smart Home Energy Scheduling," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    6. Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
    7. Schuessler, Rudolf, 2014. "Energy poverty indicators: Conceptual issues. Part I: The ten-percent-rule and double median/mean indicators," ZEW Discussion Papers 14-037, ZEW - Leibniz Centre for European Economic Research.
    8. Fankhauser, Samuel & Tepic, Sladjana, 2007. "Can poor consumers pay for energy and water? An affordability analysis for transition countries," Energy Policy, Elsevier, vol. 35(2), pages 1038-1049, February.
    9. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    10. Barnes, Douglas F. & Khandker, Shahidur R. & Samad, Hussain A., 2010. "Energy access, efficiency, and poverty : how many households are energy poor in Bangladesh ?," Policy Research Working Paper Series 5332, The World Bank.
    11. Omowunmi Mary Longe & Khmaies Ouahada & Suvendi Rimer & Hendrik C. Ferreira & A. J. Han Vinck, 2017. "Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siksnelyte-Butkiene, Indre & Streimikiene, Dalia & Balezentis, Tomas, 2022. "Addressing sustainability issues in transition to carbon-neutral sustainable society with multi-criteria analysis," Energy, Elsevier, vol. 254(PA).
    2. Rafael Ninno Muniz & Stéfano Frizzo Stefenon & William Gouvêa Buratto & Ademir Nied & Luiz Henrique Meyer & Erlon Cristian Finardi & Ricardo Marino Kühl & José Alberto Silva de Sá & Brigida Ramati Per, 2020. "Tools for Measuring Energy Sustainability: A Comparative Review," Energies, MDPI, vol. 13(9), pages 1-27, May.
    3. Dalia Streimikiene & Grigorios L. Kyriakopoulos, 2023. "Energy Poverty and Low Carbon Energy Transition," Energies, MDPI, vol. 16(2), pages 1-15, January.
    4. Omowunmi Mary Longe, 2021. "An Assessment of the Energy Poverty and Gender Nexus towards Clean Energy Adoption in Rural South Africa," Energies, MDPI, vol. 14(12), pages 1-21, June.
    5. Dalia Streimikiene & Grigorios L. Kyriakopoulos & Vidas Lekavicius & Indre Siksnelyte-Butkiene, 2021. "Energy Poverty and Low Carbon Just Energy Transition: Comparative Study in Lithuania and Greece," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(1), pages 319-371, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore Favuzza & Mariano Giuseppe Ippolito & Fabio Massaro & Rossano Musca & Eleonora Riva Sanseverino & Giuseppe Schillaci & Gaetano Zizzo, 2018. "Building Automation and Control Systems and Electrical Distribution Grids: A Study on the Effects of Loads Control Logics on Power Losses and Peaks," Energies, MDPI, vol. 11(3), pages 1-15, March.
    2. Omowunmi Mary Longe & Khmaies Ouahada & Suvendi Rimer & Hendrik C. Ferreira & A. J. Han Vinck, 2017. "Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    3. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    4. Babak Arbab-Zavar & Emilio J. Palacios-Garcia & Juan C. Vasquez & Josep M. Guerrero, 2019. "Smart Inverters for Microgrid Applications: A Review," Energies, MDPI, vol. 12(5), pages 1-22, March.
    5. Sovacool, Benjamin K. & Mukherjee, Ishani & Drupady, Ira Martina & D’Agostino, Anthony L., 2011. "Evaluating energy security performance from 1990 to 2010 for eighteen countries," Energy, Elsevier, vol. 36(10), pages 5846-5853.
    6. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    8. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    9. Giovanni Artale & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Riccardo Fiorelli & Salvatore Guaiana & Nicola Panzavecchia & Giovanni Tinè, 2019. "A New Coupling Solution for G3-PLC Employment in MV Smart Grids," Energies, MDPI, vol. 12(13), pages 1-23, June.
    10. Hussain, Shahbaz & Hernandez Fernandez, Javier & Al-Ali, Abdulla Khalid & Shikfa, Abdullatif, 2021. "Vulnerabilities and countermeasures in electrical substations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    11. Richmond, Jennifer & Urpelainen, Johannes, 2019. "Electrification and appliance ownership over time: Evidence from rural India," Energy Policy, Elsevier, vol. 133(C).
    12. Paloma Taltavull de la Paz & Francisco Juárez & Paloma Monllor, 2016. "Fuel Poverty: Evidence from housing perspective," Working Papers 2016/20, Institut d'Economia de Barcelona (IEB).
    13. Whittington, Dale & Nauges, Céline & Fuente, David & Wu, Xun, 2015. "A diagnostic tool for estimating the incidence of subsidies delivered by water utilities in low- and medium-income countries, with illustrative simulations," Utilities Policy, Elsevier, vol. 34(C), pages 70-81.
    14. Bhanot, Jaya & Jha, Vivek, 2012. "Moving towards tangible decision-making tools for policy makers: Measuring and monitoring energy access provision," Energy Policy, Elsevier, vol. 47(S1), pages 64-70.
    15. Grainger, Corbett & Schreiber, Andrew & Zhang, Fan, 2019. "Distributional impacts of energy-heat cross-subsidization," Energy Policy, Elsevier, vol. 125(C), pages 65-81.
    16. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    17. Julián Costas-Fernández & Simón Lodato, 2022. "Inequality, poverty and the composition of redistribution," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 925-967, November.
    18. Iuliia Ogarenko & Klaus Hubacek, 2013. "Eliminating Indirect Energy Subsidies in Ukraine: Estimation of Environmental and Socioeconomic Effects Using Input–Output Modeling," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 2(1), pages 1-27, December.
    19. Alain Aoun & Hussein Ibrahim & Mazen Ghandour & Adrian Ilinca, 2019. "Supply Side Management vs. Demand Side Management of a Residential Microgrid Equipped with an Electric Vehicle in a Dual Tariff Scheme," Energies, MDPI, vol. 12(22), pages 1-21, November.
    20. Khandker, Shahidur R. & Barnes, Douglas F. & Samad, Hussain A., 2010. "Energy poverty in rural and urban India : are the energy poor also income poor ?," Policy Research Working Paper Series 5463, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:947-:d:141352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.