IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p105-d125326.html
   My bibliography  Save this article

Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications

Author

Listed:
  • Christopher Winnefeld

    (Institute of Electric Power Systems, Leibniz Universität Hannover, Appelstr. 9a, 30167 Hanover, Germany)

  • Thomas Kadyk

    (Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Straße 35, 38106 Braunschweig, Germany)

  • Boris Bensmann

    (Institute of Electric Power Systems, Leibniz Universität Hannover, Appelstr. 9a, 30167 Hanover, Germany)

  • Ulrike Krewer

    (Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Straße 35, 38106 Braunschweig, Germany)

  • Richard Hanke-Rauschenbach

    (Institute of Electric Power Systems, Leibniz Universität Hannover, Appelstr. 9a, 30167 Hanover, Germany)

Abstract

In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.

Suggested Citation

  • Christopher Winnefeld & Thomas Kadyk & Boris Bensmann & Ulrike Krewer & Richard Hanke-Rauschenbach, 2018. "Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications," Energies, MDPI, vol. 11(1), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:105-:d:125326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/105/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katalenich, Scott M. & Jacobson, Mark Z., 2022. "Toward battery electric and hydrogen fuel cell military vehicles for land, air, and sea," Energy, Elsevier, vol. 254(PB).
    2. J.-K. Mueller & A. Bensmann & B. Bensmann & T. Fischer & T. Kadyk & G. Narjes & F. Kauth & B. Ponick & J. R. Seume & U. Krewer & R. Hanke-Rauschenbach & A. Mertens, 2018. "Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems," Energies, MDPI, vol. 11(1), pages 1-21, January.
    3. Maršenka Marksel & Anita Prapotnik Brdnik, 2023. "Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    4. Andriy Chaban & Zbigniew Lukasik & Marek Lis & Andrzej Szafraniec, 2020. "Mathematical Modeling of Transient Processes in Magnetic Suspension of Maglev Trains," Energies, MDPI, vol. 13(24), pages 1-17, December.
    5. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    6. Pavlos Rompokos & Sajal Kissoon & Ioannis Roumeliotis & Devaiah Nalianda & Theoklis Nikolaidis & Andrew Rolt, 2020. "Liquefied Natural Gas for Civil Aviation," Energies, MDPI, vol. 13(22), pages 1-20, November.
    7. Maršenka Marksel & Anita Prapotnik Brdnik, 2022. "Maximum Take-Off Mass Estimation of a 19-Seat Fuel Cell Aircraft Consuming Liquid Hydrogen," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    8. Jac Clarke & Wulf Dettmer & Jennifer Wen & Zhaoxin Ren, 2023. "Cryogenic Hydrogen Jet and Flame for Clean Energy Applications: Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-40, May.
    9. Mathieu Baudy & Olivier Rondeau & Amine Jaafar & Christophe Turpin & Sofyane Abbou & Mélanie Grignon, 2022. "Voltage Readjustment Methodology According to Pressure and Temperature Applied to a High Temperature PEM Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-17, April.
    10. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    11. Yuanliang Liu & Yinan Qiu & Zhan Liu & Gang Lei, 2022. "Modeling and Analysis of the Flow Characteristics of Liquid Hydrogen in a Pipe Suffering from External Transient Impact," Energies, MDPI, vol. 15(11), pages 1-12, June.
    12. Jonas Mangold & Daniel Silberhorn & Nicolas Moebs & Niclas Dzikus & Julian Hoelzen & Thomas Zill & Andreas Strohmayer, 2022. "Refueling of LH2 Aircraft—Assessment of Turnaround Procedures and Aircraft Design Implication," Energies, MDPI, vol. 15(7), pages 1-41, March.
    13. Thomas Kadyk & Christopher Winnefeld & Richard Hanke-Rauschenbach & Ulrike Krewer, 2018. "Analysis and Design of Fuel Cell Systems for Aviation," Energies, MDPI, vol. 11(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:105-:d:125326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.