IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2992-d179887.html
   My bibliography  Save this article

The Time-Series of Energy Mix and Transition: A Comparative Study of OECD Countries through the Fuzzy-Set Analysis

Author

Listed:
  • Taewook Huh

    (Graduate School of Future Strategy, KAIST (Korea Advanced Institute of Science & Technology), Daejeon 34141, Korea)

  • Yong-Chan Choi

    (Strategic Planning Center, KAIST (Korea Advanced Institute of Science & Technology), Daejeon 34141, Korea)

  • Jiyoung Hailiey Kim

    (Graduate School of International Studies, Seoul National University, Seoul 08826, Korea)

Abstract

This study aims to analyze the global trends of energy mix and energy transition from a chronological view (from Y1995 to Y2015) and identify the actual results based on the empirical findings. It sets up a measurement framework of energy mix (four energy sources: fossil fuel (F), hydroelectric (H), renewable (R), and nuclear (N)), and compares thirty-four Organisation for Economic Cooperation and Development (OECD) countries’ cases through the fuzzy-set ideal type analysis. In short, twelve ideal types of energy mix of the thirty-four OECD countries were derived in Y1995; eleven ideal types in Y2000, thirteen ideal types in Y2005, twelve ideal types in Y2010, and fifteen ideal types in Y2015, respectively. This study particularly reveals the gradual change of the features of energy transition, although an epoch-making trend of overall energy transition in OECD countries is not identified. For example, from1995 to 2010, in the case of Type 7 (F*h*r*N) with a characteristic of ‘pan-conventional energy-centered mix’ having two high features (F, N), and of Type 8 (F*h*r*n), characterized by ‘fossil fuel-centered energy mix’ with one high feature (F), seven to eight countries were steadily included, but in 2015 there was a significant decrease to four countries (solely Type 7). Throughout the five stages from 1995 to 2015, the type with the largest number of countries (20) was Type 10 (f*H*R*n, ‘pan-renewable energy-centered type’) led by hydroelectric (H) and renewable energy sources (R), followed by the second most, Type 12, (f*H*r*N, ‘hydro & nuclear-centered type’, characterized the high features of H and N) with nineteen countries.

Suggested Citation

  • Taewook Huh & Yong-Chan Choi & Jiyoung Hailiey Kim, 2018. "The Time-Series of Energy Mix and Transition: A Comparative Study of OECD Countries through the Fuzzy-Set Analysis," Energies, MDPI, vol. 11(11), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2992-:d:179887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    2. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    3. Nolden, Colin, 2013. "Governing community energy—Feed-in tariffs and the development of community wind energy schemes in the United Kingdom and Germany," Energy Policy, Elsevier, vol. 63(C), pages 543-552.
    4. Kvist, Jon, 2007. "Fuzzy set ideal type analysis," Journal of Business Research, Elsevier, vol. 60(5), pages 474-481, May.
    5. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    6. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    7. Kern, Florian & Smith, Adrian, 2008. "Restructuring energy systems for sustainability? Energy transition policy in the Netherlands," Energy Policy, Elsevier, vol. 36(11), pages 4093-4103, November.
    8. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2013. "Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis," Energy Policy, Elsevier, vol. 56(C), pages 418-424.
    9. August Wierling & Valeria Jana Schwanitz & Jan Pedro Zeiß & Celine Bout & Chiara Candelise & Winston Gilcrease & Jay Sterling Gregg, 2018. "Statistical Evidence on the Role of Energy Cooperatives for the Energy Transition in European Countries," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    10. Peter Markewitz & Martin Robinius & Detlef Stolten, 2018. "The Future of Fossil Fired Power Plants in Germany—A Lifetime Analysis," Energies, MDPI, vol. 11(6), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taewook Huh & Kee-Young Yoon & I Re Chung, 2019. "Drivers and Ideal Types towards Energy Transition: Anticipating the Futures Scenarios of OECD Countries," IJERPH, MDPI, vol. 16(8), pages 1-16, April.
    2. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    3. Beau Warbroek & Thomas Hoppe & Frans Coenen & Hans Bressers, 2018. "The Role of Intermediaries in Supporting Local Low-Carbon Energy Initiatives," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    4. Jenkins, Kirsten & Sovacool, Benjamin K. & McCauley, Darren, 2018. "Humanizing sociotechnical transitions through energy justice: An ethical framework for global transformative change," Energy Policy, Elsevier, vol. 117(C), pages 66-74.
    5. Matthew Lockwood, 2022. "Policy feedback and institutional context in energy transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 55(3), pages 487-507, September.
    6. Hultman, Nathan E. & Malone, Elizabeth L. & Runci, Paul & Carlock, Gregory & Anderson, Kate L., 2012. "Factors in low-carbon energy transformations: Comparing nuclear and bioenergy in Brazil, Sweden, and the United States," Energy Policy, Elsevier, vol. 40(C), pages 131-146.
    7. Jochen Markard & Marco Suter & Karin Ingold, 2015. "Socio-technical transitions and policy change - Advocacy coalitions in Swiss energy policy," SPRU Working Paper Series 2015-13, SPRU - Science Policy Research Unit, University of Sussex Business School.
    8. Matschoss, Kaisa & Repo, Petteri, 2020. "Forward-looking network analysis of ongoing sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    9. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    10. Marcel Bednarz & Tom Broekel, 2020. "Pulled or pushed? The spatial diffusion of wind energy between local demand and supply," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(4), pages 893-916.
    11. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    12. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    13. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
    14. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    15. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    16. Fjalar J. De Haan & Briony C. Rogers, 2019. "The Multi-Pattern Approach for Systematic Analysis of Transition Pathways," Sustainability, MDPI, vol. 11(2), pages 1-30, January.
    17. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2016. "Socio-technical analysis of the electricity sector of Mexico: Its historical evolution and implications for a transition towards low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 567-590.
    18. Inês, Campos & Guilherme, Pontes Luz & Esther, Marín-González & Swantje, Gährs & Stephen, Hall & Lars, Holstenkamp, 2020. "Regulatory challenges and opportunities for collective renewable energy prosumers in the EU," Energy Policy, Elsevier, vol. 138(C).
    19. Moritz Ehrtmann & Lars Holstenkamp & Timon Becker, 2021. "Regional Electricity Models for Community Energy in Germany: The Role of Governance Structures," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    20. Matthew, George Jr. & Nuttall, William J. & Mestel, Ben & Dooley, Laurence S., 2019. "Low carbon futures: Confronting electricity challenges on island systems," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 36-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2992-:d:179887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.