IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2885-d177917.html
   My bibliography  Save this article

Chemical Characteristics of Biomass Ashes

Author

Listed:
  • Grzegorz Zając

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Gleboka 28, 20-612 Lublin, Poland)

  • Joanna Szyszlak-Bargłowicz

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Gleboka 28, 20-612 Lublin, Poland)

  • Wojciech Gołębiowski

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Gleboka 28, 20-612 Lublin, Poland)

  • Małgorzata Szczepanik

    (Department of Applied Mathematics and Computer Science, Faculty of Production Engineering, University of Life Sciences in Lublin, Gleboka 28, 20-612 Lublin, Poland)

Abstract

The aim of the conducted research was to obtain information on the main components of ashes from 35 biomass species used in combustion processes to obtain reference data for the development of utility possibilities for these ashes, with particular emphasis on agricultural use. The examined biomass samples were divided into groups depending on origin: woody biomass and energetic woody plants I-WWB, herbaceous and grassy energy plants II-EC, agricultural waste III-AR, forest waste IV-FR and waste from the agri-food industry V-AFIW. The analysis of the studied elements contents was carried out in the designated groups. The chemical composition of ash was dominated by the macroelements Ca, K, P and S, which suggests the possibility of their agricultural use. At the same time, the low content of toxic elements such as As and Pb should not be a limiting feature in their use, with the exception of wood biomass. In addition, ashes obtained from the biomass combustion were enriched with microelements such as Zn, Cu and Mn, which further increases their possibilities of fertilizer use. The potential use of ash from each type of biomass in the aspect of its chemical composition should be considered individually, regardless of the division into groups depending on the origin of biomass.

Suggested Citation

  • Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Wojciech Gołębiowski & Małgorzata Szczepanik, 2018. "Chemical Characteristics of Biomass Ashes," Energies, MDPI, vol. 11(11), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2885-:d:177917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nives Jovičić & Alan Antonović & Ana Matin & Suzana Antolović & Sanja Kalambura & Tajana Krička, 2022. "Biomass Valorization of Walnut Shell for Liquefaction Efficiency," Energies, MDPI, vol. 15(2), pages 1-13, January.
    2. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    3. Galina Nyashina & Pavel Strizhak, 2018. "Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion," Energies, MDPI, vol. 11(9), pages 1-16, September.
    4. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    5. Zoran Čepić & Višnja Mihajlović & Slavko Đurić & Milan Milotić & Milena Stošić & Borivoj Stepanov & Milana Ilić Mićunović, 2021. "Experimental Analysis of Temperature Influence on Waste Tire Pyrolysis," Energies, MDPI, vol. 14(17), pages 1-11, August.
    6. Grzegorz Maj & Agnieszka Najda & Kamila Klimek & Sebastian Balant, 2019. "Estimation of Energy and Emissions Properties of Waste from Various Species of Mint in the Herbal Products Industry," Energies, MDPI, vol. 13(1), pages 1-13, December.
    7. Renata Tobiasz-Salach & Barbara Stadnik & Marcin Bajcar, 2023. "Oat as a Potential Source of Energy," Energies, MDPI, vol. 16(16), pages 1-19, August.
    8. Katarzyna Anna Koryś & Agnieszka Ewa Latawiec & Katarzyna Grotkiewicz & Maciej Kuboń, 2019. "The Review of Biomass Potential for Agricultural Biogas Production in Poland," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    9. A. Silveira, Edgar & Santanna Chaves, Bruno & Macedo, Lucélia & Ghesti, Grace F. & Evaristo, Rafael B.W. & Cruz Lamas, Giulia & Luz, Sandra M. & Protásio, Thiago de Paula & Rousset, Patrick, 2023. "A hybrid optimization approach towards energy recovery from torrefied waste blends," Renewable Energy, Elsevier, vol. 212(C), pages 151-165.
    10. Arkadiusz Dyjakon, 2018. "Harvesting and Baling of Pruned Biomass in Apple Orchards for Energy Production," Energies, MDPI, vol. 11(7), pages 1-14, June.
    11. Grzegorz Maj & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Tomasz Słowik & Paweł Krzaczek & Wiesław Piekarski, 2019. "Energy and Emission Characteristics of Biowaste from the Corn Grain Drying Process," Energies, MDPI, vol. 12(22), pages 1-20, November.
    12. Esperanza Mateos & Leyre Ormaetxea, 2018. "Sustainable Renewable Energy by Means of Using Residual Forest Biomass," Energies, MDPI, vol. 12(1), pages 1-16, December.
    13. Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Mumbach, Guilherme Davi & Domenico, Michele Di & da Silva Filho, Valdemar Francisco & de Sena, Rennio Felix & Machado, Ricardo Antonio F, 2020. "Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics," Renewable Energy, Elsevier, vol. 155(C), pages 1328-1338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2885-:d:177917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.