IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1876-d119118.html
   My bibliography  Save this article

Energy Recovery Efficiency of Poultry Slaughterhouse Sludge Cake by Hydrothermal Carbonization

Author

Listed:
  • Seung-Yong Oh

    (Biogas Research Center, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579, Korea)

  • Young-Man Yoon

    (Biogas Research Center, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 17579, Korea)

Abstract

Hydrothermal carbonization (HTC) is a promising technology used for bioenergy conversion from bio-wastes such as sewage sludge, livestock manure, and food waste. To determine the optimum HTC reaction temperature in maximizing the gross energy recovery efficiency of poultry slaughterhouse sludge cake, a pilot-scale HTC reactor was designed and operated under reaction temperatures of 170, 180, 190, 200 and 22 °C. During the HTC reaction, the gross energy recovery efficiency was determined based on the calorific value of the HTC-biochar and ultimate methane potential of the HTC-hydrolysate. The poultry slaughterhouse sludge cake was assessed as a useful source for the bioenergy conversion with a high calorific value of approximately 27.7 MJ/kg. The calorific values of the HTC-biochar increased from 29.6 MJ/kg to 31.3 MJ/kg in accordance with the change in the reaction temperature from 170 °C to 220 °C. The ultimate methane potential of the HTC-hydrolysate was 0.222, 0.242, 0.237, 0.228 and 0.197 Nm 3 /kg-COD added for the reaction temperatures of 170, 180, 190, 200 and 220 °C, respectively. The potential energy of feedstock was 4.541 MJ/kg. The total gross energy recovery (GER total ) was 4318 MJ/kg, of which the maximum value in the HTC reaction temperature was attained at 180 °C. Thus, the optimum temperature of the HTC reaction was 180 °C with a maximum GER total efficiency of 95.1%.

Suggested Citation

  • Seung-Yong Oh & Young-Man Yoon, 2017. "Energy Recovery Efficiency of Poultry Slaughterhouse Sludge Cake by Hydrothermal Carbonization," Energies, MDPI, vol. 10(11), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1876-:d:119118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michela Lucian & Luca Fiori, 2017. "Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis," Energies, MDPI, vol. 10(2), pages 1-18, February.
    2. Nathaniel Anderson & J. Greg Jones & Deborah Page-Dumroese & Daniel McCollum & Stephen Baker & Daniel Loeffler & Woodam Chung, 2013. "A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass," Energies, MDPI, vol. 6(1), pages 1-20, January.
    3. Kezhen Qian & Ajay Kumar & Krushna Patil & Danielle Bellmer & Donghai Wang & Wenqiao Yuan & Raymond L. Huhnke, 2013. "Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char," Energies, MDPI, vol. 6(8), pages 1-15, August.
    4. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    5. Daegi Kim & Kunio Yoshikawa & Ki Young Park, 2015. "Characteristics of Biochar Obtained by Hydrothermal Carbonization of Cellulose for Renewable Energy," Energies, MDPI, vol. 8(12), pages 1-9, December.
    6. Patrick Brassard & Stéphane Godbout & Vijaya Raghavan & Joahnn H. Palacios & Michèle Grenier & Dan Zegan, 2017. "The Production of Engineered Biochars in a Vertical Auger Pyrolysis Reactor for Carbon Sequestration," Energies, MDPI, vol. 10(3), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilhelm Jan Tic & Joanna Guziałowska-Tic & Halina Pawlak-Kruczek & Eugeniusz Woźnikowski & Adam Zadorożny & Łukasz Niedźwiecki & Mateusz Wnukowski & Krystian Krochmalny & Michał Czerep & Michał Ostryc, 2018. "Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge," Energies, MDPI, vol. 11(4), pages 1-17, March.
    2. Pablo J. Arauzo & Maciej P. Olszewski & Andrea Kruse, 2018. "Hydrothermal Carbonization Brewer’s Spent Grains with the Focus on Improving the Degradation of the Feedstock," Energies, MDPI, vol. 11(11), pages 1-15, November.
    3. Tae-Bong Kim & Jun-Hyeong Lee & Young-Man Yoon, 2024. "Residence Time Reduction in Anaerobic Reactors: Investigating the Economic Benefits of Magnetite-Induced Direct Interspecies Electron Transfer Mechanism," Energies, MDPI, vol. 17(2), pages 1-13, January.
    4. Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
    5. Mejdi Jeguirim & Lionel Limousy, 2019. "Biomass Chars: Elaboration, Characterization and Applications II," Energies, MDPI, vol. 12(3), pages 1-6, January.
    6. Kyoung S. Ro & Michael A. Jackson & Ariel A. Szogi & David L. Compton & Bryan R. Moser & Nicole D. Berge, 2022. "Sub- and Near-Critical Hydrothermal Carbonization of Animal Manures," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    7. Ozdemir, Saim & Şimşek, Aslı & Ozdemir, Serkan & Dede, Cemile, 2022. "Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization," Renewable Energy, Elsevier, vol. 190(C), pages 274-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    2. Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
    3. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    4. Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.
    5. Zhiyu Li & Weiming Yi & Zhihe Li & Chunyan Tian & Peng Fu & Yuchun Zhang & Ling Zhou & Jie Teng, 2020. "Preparation of Solid Fuel Hydrochar over Hydrothermal Carbonization of Red Jujube Branch," Energies, MDPI, vol. 13(2), pages 1-10, January.
    6. Mejdi Jeguirim & Lionel Limousy, 2017. "Biomass Chars: Elaboration, Characterization and Applications," Energies, MDPI, vol. 10(12), pages 1-7, December.
    7. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    8. Barbara Mendecka & Giovanni Di Ilio & Lidia Lombardi, 2020. "Thermo-Fluid Dynamic and Kinetic Modeling of Hydrothermal Carbonization of Olive Pomace in a Batch Reactor," Energies, MDPI, vol. 13(16), pages 1-16, August.
    9. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    10. Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2017. "Chemical Characteristics and NaCl Component Behavior of Biochar Derived from the Salty Food Waste by Water Flushing," Energies, MDPI, vol. 10(10), pages 1-15, October.
    11. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    12. Arthur M. James R. & Wenqiao Yuan & Michael D. Boyette, 2016. "The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips," Energies, MDPI, vol. 9(4), pages 1-13, April.
    13. Daniel Reißmann & Daniela Thrän & Alberto Bezama, 2018. "Key Development Factors of Hydrothermal Processes in Germany by 2030: A Fuzzy Logic Analysis," Energies, MDPI, vol. 11(12), pages 1-20, December.
    14. Piotr Wojewódzki & Joanna Lemanowicz & Bozena Debska & Samir A. Haddad & Erika Tobiasova, 2022. "The Application of Biochar from Waste Biomass to Improve Soil Fertility and Soil Enzyme Activity and Increase Carbon Sequestration," Energies, MDPI, vol. 16(1), pages 1-16, December.
    15. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    16. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    17. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
    18. Nunzio Cardullo & Melania Leanza & Vera Muccilli & Corrado Tringali, 2021. "Valorization of Agri-Food Waste from Pistachio Hard Shells: Extraction of Polyphenols as Natural Antioxidants," Resources, MDPI, vol. 10(5), pages 1-17, May.
    19. Heiner Brookman & Fabian Gievers & Volker Zelinski & Jan Ohlert & Achim Loewen, 2018. "Influence of Hydrothermal Carbonization on Composition, Formation and Elimination of Biphenyls, Dioxins and Furans in Sewage Sludge," Energies, MDPI, vol. 11(6), pages 1-13, June.
    20. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1876-:d:119118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.