IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1464-d112918.html
   My bibliography  Save this article

Zonal Voltage Control Combined Day-Ahead Scheduling and Real-Time Control for Distribution Networks with High Proportion of PVs

Author

Listed:
  • Chuanliang Xiao

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China)

  • Bo Zhao

    (State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China)

  • Ming Ding

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China)

  • Zhihao Li

    (State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China)

  • Xiaohui Ge

    (State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China)

Abstract

Considering the possible overvoltage caused by the high proportion of photovoltaic systems (PVs) accessing distribution networks in the future, traditional centralized control methods will be too complex to satisfy the control response time demands. To solve this problem this paper presents a two-level voltage control method. At the day-ahead level, based on the PV-output and load-demand forecast, a community detection algorithm using an improved modularity index is introduced to divide the distribution network into clusters; a day-ahead optimal scheduling is drawn up on the basis of the network partition, and the objective is to minimize the operation costs of the distribution networks. At the real-time level, under the day-ahead optimal scheduling and network partition of the upper level, a real-time optimal voltage control algorithm is proposed based on the real-time operation data of the distribution networks, and the objective is to correct the day-ahead optimal scheduling through modifications. Thus, the algorithm realizes the combination of day-ahead scheduling and real-time control and achieves complete zonal voltage control for future distribution networks with high proportion of PVs. The proposed method can not only optimize the tap operation of an on-load tap changer (OLTC), improving the PV hosting capacity of the distribution network for a high proportion of PVs, but can also reduce the number of control nodes and simplify the control process to reduce the optimization time. The proposed approach is applied to a real, practical, 10 kV, 62-node feeder in Zhejiang Province of China to verify its feasibility and effectiveness.

Suggested Citation

  • Chuanliang Xiao & Bo Zhao & Ming Ding & Zhihao Li & Xiaohui Ge, 2017. "Zonal Voltage Control Combined Day-Ahead Scheduling and Real-Time Control for Distribution Networks with High Proportion of PVs," Energies, MDPI, vol. 10(10), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1464-:d:112918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinuo Huang & Licheng Wang & Kai Wang, 2019. "Investigation of Var Compensation Schemes in Unbalanced Distribution Systems," Complexity, Hindawi, vol. 2019, pages 1-13, October.
    2. Chuanliang Xiao & Lei Sun & Ming Ding, 2020. "Multiple Spatiotemporal Characteristics-Based Zonal Voltage Control for High Penetrated PVs in Active Distribution Networks," Energies, MDPI, vol. 13(1), pages 1-21, January.
    3. Jean-François Toubeau & Bashir Bakhshideh Zad & Martin Hupez & Zacharie De Grève & François Vallée, 2020. "Deep Reinforcement Learning-Based Voltage Control to Deal with Model Uncertainties in Distribution Networks," Energies, MDPI, vol. 13(15), pages 1-15, August.
    4. Wenwen Sun & Guoqing He, 2023. "Cluster Partition-Based Voltage Control Combined Day-Ahead Scheduling and Real-Time Control for Distribution Networks," Energies, MDPI, vol. 16(11), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    2. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    3. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    4. Peng Zhang & Huibin Sui, 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm," Energies, MDPI, vol. 13(5), pages 1-15, March.
    5. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.
    6. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    7. Haneen Abuzaid & Fatin Samara, 2022. "Environmental and Economic Impact Assessments of a Photovoltaic Rooftop System in the United Arab Emirates," Energies, MDPI, vol. 15(22), pages 1-27, November.
    8. Chen, Weidong & Wei, Pengbang, 2018. "Socially optimal deployment strategy and incentive policy for solar photovoltaic community microgrid: A case of China," Energy Policy, Elsevier, vol. 116(C), pages 86-94.
    9. M. Hasanuzzaman & Ummu Salamah Zubir & Nur Iqtiyani Ilham & Hang Seng Che, 2017. "Global electricity demand, generation, grid system, and renewable energy polices: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    10. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.
    11. Kumar, Sandeep & Nehra, Monika & Deep, Akash & Kedia, Deepak & Dilbaghi, Neeraj & Kim, Ki-Hyun, 2017. "Quantum-sized nanomaterials for solar cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 821-839.
    12. Najafi, G. & Ghobadian, B. & Mamat, R. & Yusaf, T. & Azmi, W.H., 2015. "Solar energy in Iran: Current state and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 931-942.
    13. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    14. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    15. Zafrilla, Jorge-Enrique & Arce, Guadalupe & Cadarso, María-Ángeles & Córcoles, Carmen & Gómez, Nuria & López, Luis-Antonio & Monsalve, Fabio & Tobarra, María-Ángeles, 2019. "Triple bottom line analysis of the Spanish solar photovoltaic sector: A footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Terrapon-Pfaff, Julia & Fink, Thomas & Viebahn, Peter & Jamea, El Mostafa, 2019. "Social impacts of large-scale solar thermal power plants: Assessment results for the NOORO I power plant in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Idiano D’Adamo, 2018. "The Profitability of Residential Photovoltaic Systems. A New Scheme of Subsidies Based on the Price of CO 2 in a Developed PV Market," Social Sciences, MDPI, vol. 7(9), pages 1-21, August.
    18. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    19. Husain, Alaa A.F. & Hasan, Wan Zuha W. & Shafie, Suhaidi & Hamidon, Mohd N. & Pandey, Shyam Sudhir, 2018. "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 779-791.
    20. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1464-:d:112918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.