IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i7p156-d248429.html
   My bibliography  Save this article

Infrared Thermography Applied to Tree Health Assessment: A Review

Author

Listed:
  • Daniele Vidal

    (Unit for Inland Development, Polytechnic of Guarda, Avenida Doutor Francisco Sá Carneiro N◦50, 6300-559 Guarda, Portugal)

  • Rui Pitarma

    (Unit for Inland Development, Polytechnic of Guarda, Avenida Doutor Francisco Sá Carneiro N◦50, 6300-559 Guarda, Portugal)

Abstract

The tree is a fundamental living being. It contributes to nature and climate behaviour, as well to urban greening. It is also a source of wealth and employment. Most tree health inspection techniques are invasive or even destructive. Infrared thermography (IRT) is not invasive, and it has shown advantages when applied for inspection to trees and wood to detect deterioration or voids that could compromise its structure, stability, and durability. This study reviews the literature about IRT applied to a tree health inspection. It is framed in the context of the importance of trees for the balance of ecosystems, and the different techniques to detect tree deterioration. It highlights the difference when applied to wood or trees and the main factors that have been proven to cause disturbances in the thermal pattern of trees. The IRT, as other non-destructive methods, does not distinguish what type of damage it is, nor its causative agent. However, it enables identifying healthy and deteriorated tissues. The technology is very promising since it reveals that is efficient, fast, economical, and sustainable.

Suggested Citation

  • Daniele Vidal & Rui Pitarma, 2019. "Infrared Thermography Applied to Tree Health Assessment: A Review," Agriculture, MDPI, vol. 9(7), pages 1-15, July.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:7:p:156-:d:248429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/7/156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/7/156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shigo, Alex L. & Marx, Harold G., 1977. "Compartmentalization of Decay in Trees," Agricultural Information Bulletins 309547, United States Department of Agriculture, Economic Research Service.
    2. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    3. Maria Eduarda Ferreira & Ana Catarina André & Rui Pitarma, 2019. "Potentialities of Thermography in Ecocentric Education of Children: An Experience on Training of Future Primary Teachers," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Kayad & Dimitrios S. Paraforos & Francesco Marinello & Spyros Fountas, 2020. "Latest Advances in Sensor Applications in Agriculture," Agriculture, MDPI, vol. 10(8), pages 1-8, August.
    2. Margot Dudkiewicz & Wojciech Durlak, 2021. "Sonic Tomograph as a Tool Supporting the Sustainable Management of Historical Greenery of the UMCS Botanical Garden in Lublin," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    3. Margot Dudkiewicz & Wojciech Durlak, 2023. "Acoustic Tomography as a Supporting Tool in the Sustainable Management of Historic Greenery: Example of the Church Garden in Horostyta (Poland)," Sustainability, MDPI, vol. 15(11), pages 1-31, May.
    4. Rui Pitarma & João Crisóstomo & Maria Eduarda Ferreira, 2019. "Contribution to Trees Health Assessment Using Infrared Thermography," Agriculture, MDPI, vol. 9(8), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    2. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    3. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).
    4. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    5. Ganesh Kumar Balakrishnan & Chong Tak Yaw & Siaw Paw Koh & Tarek Abedin & Avinash Ashwin Raj & Sieh Kiong Tiong & Chai Phing Chen, 2022. "A Review of Infrared Thermography for Condition-Based Monitoring in Electrical Energy: Applications and Recommendations," Energies, MDPI, vol. 15(16), pages 1-37, August.
    6. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    7. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Fernanda Cruz Rios & Sulaiman Al Sultan & Oswald Chong & Kristen Parrish, 2023. "Empowering Owner-Operators of Small and Medium Commercial Buildings to Identify Energy Retrofit Opportunities," Energies, MDPI, vol. 16(17), pages 1-20, August.
    9. Rui Pitarma & João Crisóstomo & Maria Eduarda Ferreira, 2019. "Contribution to Trees Health Assessment Using Infrared Thermography," Agriculture, MDPI, vol. 9(8), pages 1-14, August.
    10. Ramón Martínez-Medina & José C. Arrebola, 2019. "Analysis of Sustainability Activities in Spanish Elementary Education Textbooks," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    11. Wang, Yiping & Fu, Hailing & Huang, Qunwu & Cui, Yong & Sun, Yong & Jiang, Lihong, 2015. "Experimental study of direct contact vaporization heat transfer on n-pentane-water flowing interface," Energy, Elsevier, vol. 93(P1), pages 854-863.
    12. Haichao Zheng & Xue Zhong & Junru Yan & Lihua Zhao & Xintian Wang, 2020. "A Thermal Performance Detection Method for Building Envelope Based on 3D Model Generated by UAV Thermal Imagery," Energies, MDPI, vol. 13(24), pages 1-18, December.
    13. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    14. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
    15. Cho, Hyun Mi & Yun, Beom Yeol & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building," Applied Energy, Elsevier, vol. 275(C).
    16. Cho, Hyun Mi & Yun, Beom Yeol & Kim, Young Uk & Yuk, Hyeonseong & Kim, Sumin, 2022. "Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure i," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Lucchi, Elena, 2018. "Applications of the infrared thermography in the energy audit of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3077-3090.
    18. Baldinelli, Giorgio & Bianchi, Francesco & Rotili, Antonella & Costarelli, Danilo & Seracini, Marco & Vinti, Gianluca & Asdrubali, Francesco & Evangelisti, Luca, 2018. "A model for the improvement of thermal bridges quantitative assessment by infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 854-864.
    19. José María Marcos-Merino & Isaac Corbacho-Cuello & Míriam Hernández-Barco, 2020. "Analysis of Sustainability Knowingness, Attitudes and Behavior of a Spanish Pre-Service Primary Teachers Sample," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    20. Juan Manuel Bermudez-Garcia, 2022. "@thermogramer: Thermal Imaging as a Tool for Science Communication and E-Learning in Social Media," Sustainability, MDPI, vol. 14(5), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:7:p:156-:d:248429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.