IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v110y2021icp314-334.html
   My bibliography  Save this article

Physical mobility and virtual communication in Italy: Trends, analytical relationships and policies for the post COVID-19

Author

Listed:
  • Caballini, Claudia
  • Agostino, Matteo
  • Dalla Chiara, Bruno

Abstract

People have always moved guided by the need to carry out various activities in different places, including that of meeting and communicating with other people. Over the past two decades, the concept of “communication” has significantly evolved given the introduction of multimedia digital technologies, which have enabled people to communicate without necessarily their physical presence. During the COVID-19 pandemic, “virtual mobility” (or “virtual communication”) played a crucial role in ensuring communications between people in different contexts of social life, growing in few months to previously unforeseeable levels and demonstrating that it can substitute physical movements in many occasions. A smart management of mobility that combines the ability to virtually communicate and the use of Intelligent Transportation Systems (ITS) to support physical mobility, can therefore strongly influence people's choice to move or not, and how. Starting from the analysis of physical mobility and virtual communications trends before and during the health emergency in Italy, this paper analyses the relationships between these two forms of communication, evaluating how virtual communication affected the different segments of Italian mobility during the pandemic and how it will affect the way people move in the post COVID-19 period. A SWOT analysis of virtual mobility is performed for each communication segment, with the aim of highlighting its pros and cons, but also future opportunities and possible threats. Some policy indications are also provided in relation to different mobility segments, governance levels (urban, regional and national) and congestion/pollution scenarios, highlighting how virtual mobility can help regulate physical movements, with the ultimate goal of pursuing a safe, sustainable, effective, efficient and connected mobility.

Suggested Citation

  • Caballini, Claudia & Agostino, Matteo & Dalla Chiara, Bruno, 2021. "Physical mobility and virtual communication in Italy: Trends, analytical relationships and policies for the post COVID-19," Transport Policy, Elsevier, vol. 110(C), pages 314-334.
  • Handle: RePEc:eee:trapol:v:110:y:2021:i:c:p:314-334
    DOI: 10.1016/j.tranpol.2021.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X21001888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2021.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konrad, Kathrin & Wittowsky, Dirk, 2018. "Virtual mobility and travel behavior of young people – Connections of two dimensions of mobility," Research in Transportation Economics, Elsevier, vol. 68(C), pages 11-17.
    2. Garín-Muñoz, Teresa & López, Rafael & Pérez-Amaral, Teodosio & Herguera, Iñigo & Valarezo, Angel, 2019. "Models for individual adoption of eCommerce, eBanking and eGovernment in Spain," Telecommunications Policy, Elsevier, vol. 43(1), pages 100-111.
    3. Hisi, Andreia N.S. & Macau, Elbert E.N. & Tizei, Luiz H.G., 2019. "The role of mobility in epidemic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    4. Brewer, Ann M., 1998. "Work design, flexible work arrangements and travel behaviour: policy implications," Transport Policy, Elsevier, vol. 5(2), pages 93-101, April.
    5. Stefano Maria Iacus & Fabrizio Natale & Carlos Satamaria & Spyridon Spyratos & Michele Vespe, 2020. "Estimating and Projecting Air Passenger Traffic during the COVID-19 Coronavirus Outbreak and its Socio-Economic Impact," Papers 2004.08460, arXiv.org, revised Apr 2020.
    6. Hopkins, John L. & McKay, Judith, 2019. "Investigating ‘anywhere working’ as a mechanism for alleviating traffic congestion in smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 258-272.
    7. Delbosc, Alexa & Mokhtarian, Patricia, 2018. "Face to Facebook: The relationship between social media and social travel," Transport Policy, Elsevier, vol. 68(C), pages 20-27.
    8. Zhang, Yahua & Zhang, Anming & Wang, Jiaoe, 2020. "Exploring the roles of high-speed train, air and coach services in the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 94(C), pages 34-42.
    9. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    10. Erik Brynjolfsson & John J. Horton & Adam Ozimek & Daniel Rock & Garima Sharma & Hong-Yi TuYe, 2020. "COVID-19 and Remote Work: An Early Look at US Data," NBER Working Papers 27344, National Bureau of Economic Research, Inc.
    11. Bris, Myriam & Pawlak, Jacek & Polak, John W., 2017. "How is ICT use linked to household transport expenditure? A cross-national macro analysis of the influence of home broadband access," Journal of Transport Geography, Elsevier, vol. 60(C), pages 231-242.
    12. Lyons, Glenn, 2002. "Internet: investigating new technology's evolving role, nature and effects on transport," Transport Policy, Elsevier, vol. 9(4), pages 335-346, October.
    13. Saha, Jay & Barman, Bikash & Chouhan, Pradip, 2020. "Lockdown for COVID-19 and its impact on community mobility in India: An analysis of the COVID-19 Community Mobility Reports, 2020," Children and Youth Services Review, Elsevier, vol. 116(C).
    14. Hensher, David A., 2018. "Tackling road congestion – What might it look like in the future under a collaborative and connected mobility model?," Transport Policy, Elsevier, vol. 66(C), pages 1-8.
    15. Mozos-Blanco, Miguel Ángel & Pozo-Menéndez, Elisa & Arce-Ruiz, Rosa & Baucells-Aletà, Neus, 2018. "The way to sustainable mobility. A comparative analysis of sustainable mobility plans in Spain," Transport Policy, Elsevier, vol. 72(C), pages 45-54.
    16. Vittoria Colizza & Alain Barrat & Marc Barthelemy & Alain-Jacques Valleron & Alessandro Vespignani, 2007. "Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions," PLOS Medicine, Public Library of Science, vol. 4(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qiyang & Liu, Zhengying & Kang, Tingting & Zhu, Le & Zhao, Pengjun, 2022. "Transport inequities through the lens of environmental racism: Rural-urban migrants under Covid-19," Transport Policy, Elsevier, vol. 122(C), pages 26-38.
    2. Zsigó, Zsanett, 2023. "Methodologies For Measuring Mobility In Covid-19 Research," Economic and Regional Studies (Studia Ekonomiczne i Regionalne), John Paul II University of Applied Sciences in Biala Podlaska, vol. 16(2), June.
    3. Claudia Caballini & Erika Olivari & Carlotta Gasparini & Bruno Dalla Chiara, 2023. "The Spread of MaaS Initiatives in Europe: The Leading Role of Public Governance Emerging from an Italian Regional Application," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    4. Zsigó Zsanett, 2023. "Methodologies for Measuring Mobility in Covid-19 Research," Economic and Regional Studies / Studia Ekonomiczne i Regionalne, Sciendo, vol. 16(2), pages 186-202, June.
    5. Witold Torbacki, 2021. "Achieving Sustainable Mobility in the Szczecin Metropolitan Area in the Post-COVID-19 Era: The DEMATEL and PROMETHEE II Approach," Sustainability, MDPI, vol. 13(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Linfeng & Yang, Hangjun & Wang, Kun & Bian, Lei & Zhang, Xian, 2021. "The impact of COVID-19 on airline passenger travel behavior: An exploratory analysis on the Chinese aviation market," Journal of Air Transport Management, Elsevier, vol. 95(C).
    2. Saeed Nosratabadi & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Andry Rakotonirainy & Kwok Wing Chau, 2019. "Sustainable Business Models: A Review," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    3. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2022. "STARTUPS: Founding airlines during COVID-19 - A hopeless endeavor or an ample opportunity for a better aviation system?," Transport Policy, Elsevier, vol. 118(C), pages 10-19.
    4. Sun, Xiaoqian & Wandelt, Sebastian & Zheng, Changhong & Zhang, Anming, 2021. "COVID-19 pandemic and air transportation: Successfully navigating the paper hurricane," Journal of Air Transport Management, Elsevier, vol. 94(C).
    5. Iria Lopez-Carreiro & Andres Monzon & Elena Lopez, 2023. "MaaS Implications in the Smart City: A Multi-Stakeholder Approach," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    6. Nosratabadi, Saeed & Mosavi, Amir & Shamshirband, Shahaboddin & Zavadskas, Edmundas Kazimieras & Rakotonirainy, Andry & Chau, Kwok Wing, 2020. "Sustainable Business Models: A Review," OSF Preprints u4xw3, Center for Open Science.
    7. Douglas Mitieka & Rose Luke & Hossana Twinomurinzi & Joash Mageto, 2023. "Smart Mobility in Urban Areas: A Bibliometric Review and Research Agenda," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    8. Paulo Antonio Maldonado Silveira Alonso Munhoz & Fabricio da Costa Dias & Christine Kowal Chinelli & André Luis Azevedo Guedes & João Alberto Neves dos Santos & Wainer da Silveira e Silva & Carlos Alb, 2020. "Smart Mobility: The Main Drivers for Increasing the Intelligence of Urban Mobility," Sustainability, MDPI, vol. 12(24), pages 1-25, December.
    9. Crowley, Frank & Daly, Hannah & Doran, Justin & Ryan, Geraldine & Caulfield, Brian, 2021. "The impact of labour market disruptions and transport choice on the environment during COVID-19," Transport Policy, Elsevier, vol. 106(C), pages 185-195.
    10. Nosratabadi, Saeed & Mosavi, Amir & Shamshirband, Shahaboddin & Zavadskas, Edmundas Kazimieras & Rakotonirainy, Andry & Chau, Kwok Wing, 2020. "Sustainable Business Models: A Review," OSF Preprints ts54m, Center for Open Science.
    11. Xue, Dabin & Liu, Zhizhao & Wang, Bing & Yang, Jian, 2021. "Impacts of COVID-19 on aircraft usage and fuel consumption: A case study on four Chinese international airports," Journal of Air Transport Management, Elsevier, vol. 95(C).
    12. Mutascu, Mihai & Sokic, Alexandre, 2023. "Air transportation under COVID-19 pandemic restrictions: A wavelet analysis," Transport Policy, Elsevier, vol. 139(C), pages 155-181.
    13. Harsh Shah & Andre L. Carrel & Huyen T. K. Le, 2024. "Impacts of teleworking and online shopping on travel: a tour-based analysis," Transportation, Springer, vol. 51(1), pages 99-127, February.
    14. Warnock-Smith, David & Graham, Anne & O'Connell, John F. & Efthymiou, Marina, 2021. "Impact of COVID-19 on air transport passenger markets: Examining evidence from the Chinese market," Journal of Air Transport Management, Elsevier, vol. 94(C).
    15. Echaniz, Eneko & Rodríguez, Andrés & Cordera, Rubén & Benavente, Juan & Alonso, Borja & Sañudo, Roberto, 2021. "Behavioural changes in transport and future repercussions of the COVID-19 outbreak in Spain," Transport Policy, Elsevier, vol. 111(C), pages 38-52.
    16. Fang, Da & Guo, Yan, 2022. "Flow of goods to the shock of COVID-19 and toll-free highway policy: Evidence from logistics data in China," Research in Transportation Economics, Elsevier, vol. 93(C).
    17. Jinhyun Hong & David Philip McArthur & Mark Livingston, 2019. "Can Accessing the Internet while Travelling Encourage Commuters to Use Public Transport Regardless of Their Attitude?," Sustainability, MDPI, vol. 11(12), pages 1-10, June.
    18. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    19. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    20. Teruhiko Yoneyama & Sanmay Das & Mukkai Krishnamoorthy, 2012. "A Hybrid Model for Disease Spread and an Application to the SARS Pandemic," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(1), pages 1-5.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:110:y:2021:i:c:p:314-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.