IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v48y2012i5p907-918.html
   My bibliography  Save this article

Modeling hazardous materials risks for different train make-up plans

Author

Listed:
  • Bagheri, Morteza
  • Saccomanno, Frank
  • Fu, Liping

Abstract

This paper is concerned with the problem of how to place hazardous material cars in the train assembly process so that the overall derailment risk can be minimized. The approach considers both the probability of railway cars derailing en route by position as well as the risk associated with additional operations in the rail yard using recent US FRA data. The merits of this car placement model are illustrated through a case study of a railway corridor that connects Los Angeles (CA) to Chicago (IL). The case study demonstrates that the proposed risk minimization strategy could be implemented with minimal rail yard operation cost.

Suggested Citation

  • Bagheri, Morteza & Saccomanno, Frank & Fu, Liping, 2012. "Modeling hazardous materials risks for different train make-up plans," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 907-918.
  • Handle: RePEc:eee:transe:v:48:y:2012:i:5:p:907-918
    DOI: 10.1016/j.tre.2012.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554512000191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2012.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravindra K. Ahuja & Krishna C. Jha & Jian Liu, 2007. "Solving Real-Life Railroad Blocking Problems," Interfaces, INFORMS, vol. 37(5), pages 404-419, October.
    2. Cynthia Barnhart & Hong Jin & Pamela H. Vance, 2000. "Railroad Blocking: A Network Design Application," Operations Research, INFORMS, vol. 48(4), pages 603-614, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ditta, A. & Figueroa, O. & Galindo, G. & Yie-Pinedo, R., 2019. "A review on research in transportation of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    2. Shahrzad Faghih-Roohi & Yew-Soon Ong & Sobhan Asian & Allan N. Zhang, 2016. "Dynamic conditional value-at-risk model for routing and scheduling of hazardous material transportation networks," Annals of Operations Research, Springer, vol. 247(2), pages 715-734, December.
    3. Bhavsar, Nishit & Verma, Manish, 2022. "A subsidy policy to managing hazmat risk in railroad transportation network," European Journal of Operational Research, Elsevier, vol. 300(2), pages 633-646.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Jian Gang & Zhao, Jun & Lee, Der-Horng, 2013. "A column generation based approach for the Train Network Design Optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 1-17.
    2. Armin Fügenschuh & Henning Homfeld & Hanno Schülldorf, 2015. "Single-Car Routing in Rail Freight Transport," Transportation Science, INFORMS, vol. 49(1), pages 130-148, February.
    3. Chen, Chongshuang & Dollevoet, Twan & Zhao, Jun, 2018. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 1-30.
    4. Markus Bohlin & Sara Gestrelius & Florian Dahms & Matúš Mihalák & Holger Flier, 2016. "Optimization Methods for Multistage Freight Train Formation," Transportation Science, INFORMS, vol. 50(3), pages 823-840, August.
    5. Zhimei Wang & Avishai Ceder, 2017. "Efficient design of freight train operation with double-hump yards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1600-1619, December.
    6. Lin, Bo-Liang & Wang, Zhi-Mei & Ji, Li-Jun & Tian, Ya-Ming & Zhou, Guo-Qing, 2012. "Optimizing the freight train connection service network of a large-scale rail system," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 649-667.
    7. Chen, C. & Dollevoet, T.A.B. & Zhao, J., 2017. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Econometric Institute Research Papers EI-2017-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Xiao, Jie & Pachl, Joern & Lin, Boliang & Wang, Jiaxi, 2018. "Solving the block-to-train assignment problem using the heuristic approach based on the genetic algorithm and tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 148-171.
    9. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    10. Boliang Lin & Jingsong Duan & Jiaxi Wang & Min Sun & Wengao Peng & Chang Liu & Jie Xiao & Siqi Liu & Jianping Wu, 2018. "A study of the car-to-train assignment problem for rail express cargos in the scheduled and unscheduled train services network," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
    11. Wang, Dian & Zhao, Jun & Peng, Qiyuan, 2022. "Optimizing the loaded train combination problem at a heavy-haul marshalling station," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    12. J Liu & R K Ahuja & G Şahin, 2008. "Optimal network configuration and capacity expansion of railroads," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 911-920, July.
    13. Scheffler, Martin & Neufeld, Janis S. & Hölscher, Michael, 2020. "An MIP-based heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting processes," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 64-80.
    14. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    15. Alena Otto & Erwin Pesch, 2017. "Operation of shunting yards: train-to-yard assignment problem," Journal of Business Economics, Springer, vol. 87(4), pages 465-486, May.
    16. Sarah Frisch & Philipp Hungerländer & Anna Jellen & Manuel Lackenbucher & Bernhard Primas & Sebastian Steininger, 2023. "Integrated freight car routing and train scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 417-443, June.
    17. Schwerdfeger, Stefan & Otto, Alena & Boysen, Nils, 2021. "Rail platooning: Scheduling trains along a rail corridor with rapid-shunting facilities," European Journal of Operational Research, Elsevier, vol. 294(2), pages 760-778.
    18. Manish Verma & Vedat Verter & Michel Gendreau, 2011. "A Tactical Planning Model for Railroad Transportation of Dangerous Goods," Transportation Science, INFORMS, vol. 45(2), pages 163-174, May.
    19. Ralf Borndörfer & Torsten Klug & Thomas Schlechte & Armin Fügenschuh & Thilo Schang & Hanno Schülldorf, 2016. "The Freight Train Routing Problem for Congested Railway Networks with Mixed Traffic," Transportation Science, INFORMS, vol. 50(2), pages 408-423, May.
    20. Khaled, Abdullah A. & Jin, Mingzhou & Clarke, David B. & Hoque, Mohammad A., 2015. "Train design and routing optimization for evaluating criticality of freight railroad infrastructures," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 71-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:48:y:2012:i:5:p:907-918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.