IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v134y2020ics1366554519302662.html
   My bibliography  Save this article

Storage space allocation problem at inland bulk material stockyard

Author

Listed:
  • Sun, Defeng
  • Meng, Ying
  • Tang, Lixin
  • Liu, Jinyin
  • Huang, Baobin
  • Yang, Jiefu

Abstract

We consider the storage space allocation problem at an inland bulk stockyard, which aims to find an effective way to store the shapeless materials. Due to the specific storage and handling means in the stockyard, unloading, stacking and reclaiming operations need to be scheduled in an integrated manner. Viewing the space of each stock pad in the yard as a series of unit slots, we first develop a novel MIP formulation which can avoid generating scattered small fields. We then decompose the model by exploiting the relationships among the above operations, and develop a logic-based Benders approach to solve it optimally.

Suggested Citation

  • Sun, Defeng & Meng, Ying & Tang, Lixin & Liu, Jinyin & Huang, Baobin & Yang, Jiefu, 2020. "Storage space allocation problem at inland bulk material stockyard," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:transe:v:134:y:2020:i:c:s1366554519302662
    DOI: 10.1016/j.tre.2020.101856
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554519302662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.101856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lixin Tang & Defeng Sun & Jiyin Liu, 2016. "Integrated storage space allocation and ship scheduling problem in bulk cargo terminals," IISE Transactions, Taylor & Francis Journals, vol. 48(5), pages 428-439, May.
    2. Yu, Mingzhu & Qi, Xiangtong, 2013. "Storage space allocation models for inbound containers in an automatic container terminal," European Journal of Operational Research, Elsevier, vol. 226(1), pages 32-45.
    3. Yat‐wah Wan & Jiyin Liu & Pei‐Chun Tsai, 2009. "The assignment of storage locations to containers for a container stack," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(8), pages 699-713, December.
    4. Zhang, Chuqian & Liu, Jiyin & Wan, Yat-wah & Murty, Katta G. & Linn, Richard J., 2003. "Storage space allocation in container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 37(10), pages 883-903, December.
    5. Unsal, Ozgur & Oguz, Ceyda, 2019. "An exact algorithm for integrated planning of operations in dry bulk terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 103-121.
    6. Thomas Kalinowski & Reena Kapoor & Martin W. P. Savelsbergh, 2017. "Scheduling reclaimers serving a stock pad at a coal terminal," Journal of Scheduling, Springer, vol. 20(1), pages 85-101, February.
    7. Soudagar A K Irfan Babu & Saurabh Pratap & Geet Lahoti & Kiran J Fernandes & Manoj K Tiwari & Matthew Mount & Yu Xiong, 2015. "Minimizing delay of ships in bulk terminals by simultaneous ship scheduling, stockyard planning and train scheduling," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 17(4), pages 464-492, December.
    8. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    9. Sun, Defeng & Tang, Lixin & Baldacci, Roberto, 2019. "A Benders decomposition-based framework for solving quay crane scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(2), pages 504-515.
    10. Menezes, Gustavo Campos & Mateus, Geraldo Robson & Ravetti, Martín Gómez, 2017. "A branch and price algorithm to solve the integrated production planning and scheduling in bulk ports," European Journal of Operational Research, Elsevier, vol. 258(3), pages 926-937.
    11. Li, Shuqin & Jia, Shuai, 2019. "A Benders decomposition algorithm for the order fulfilment problem of an e-tailer with a self-owned logistics system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 463-480.
    12. Umang, Nitish & Bierlaire, Michel & Vacca, Ilaria, 2013. "Exact and heuristic methods to solve the berth allocation problem in bulk ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 14-31.
    13. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    14. Lixin Tang & Wei Jiang & Jiyin Liu & Yun Dong, 2015. "Research into container reshuffling and stacking problems in container terminal yards," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 751-766, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Baobin & Tang, Lixin & Baldacci, Roberto & Wang, Gongshu & Sun, Defeng, 2023. "A metaheuristic algorithm for a locomotive routing problem arising in the steel industry," European Journal of Operational Research, Elsevier, vol. 308(1), pages 385-399.
    2. Sun, Defeng & Tang, Lixin & Baldacci, Roberto & Lim, Andrew, 2021. "An exact algorithm for the unidirectional quay crane scheduling problem with vessel stability," European Journal of Operational Research, Elsevier, vol. 291(1), pages 271-283.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Xu, Yunzhuo & Guo, Zijian, 2022. "Joint berth allocation and ship loader scheduling under the rotary loading mode in coal export terminals," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 229-260.
    2. Bouzekri, Hamza & Bara, Najat & Alpan, Gülgün & Giard, Vincent, 2022. "An integrated Decision Support System for planning production, storage and bulk port operations in a fertilizer supply chain," International Journal of Production Economics, Elsevier, vol. 252(C).
    3. João Luiz Marques Andrade & Gustavo Campos Menezes, 2023. "A column generation-based heuristic to solve the integrated planning, scheduling, yard allocation and berth allocation problem in bulk ports," Journal of Heuristics, Springer, vol. 29(1), pages 39-76, February.
    4. Unsal, Ozgur & Oguz, Ceyda, 2019. "An exact algorithm for integrated planning of operations in dry bulk terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 103-121.
    5. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    6. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    7. Marcos Wagner Jesus Servare Junior & Helder Roberto de Oliveira Rocha & José Leandro Félix Salles & Sylvain Perron, 2020. "A Linear Relaxation-Based Heuristic for Iron Ore Stockyard Energy Planning," Energies, MDPI, vol. 13(19), pages 1-18, October.
    8. Guo, Zijian & Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Feng, Peng, 2021. "An integrated model for vessel traffic and deballasting scheduling in coal export terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Dafnomilis, I. & Duinkerken, M.B. & Junginger, M. & Lodewijks, G. & Schott, D.L., 2018. "Optimal equipment deployment for biomass terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 147-163.
    10. Gleb Belov & Natashia L. Boland & Martin W. P. Savelsbergh & Peter J. Stuckey, 2020. "Logistics optimization for a coal supply chain," Journal of Heuristics, Springer, vol. 26(2), pages 269-300, April.
    11. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    12. Hamza Bouzekri & Gülgün Alpan & Vincent Giard, 2022. "Integrated Laycan and Berth Allocation Problem with ship stability and conveyor routing constraints in bulk ports," Working Papers hal-03431793, HAL.
    13. Iris, Çağatay & Pacino, Dario & Ropke, Stefan & Larsen, Allan, 2015. "Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 75-97.
    14. Tao, Yi & Lee, Chung-Yee, 2015. "Joint planning of berth and yard allocation in transshipment terminals using multi-cluster stacking strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 34-50.
    15. Boschma, René & Mes, Martijn R.K. & de Vries, Leon R., 2023. "Approximate dynamic programming for container stacking," European Journal of Operational Research, Elsevier, vol. 310(1), pages 328-342.
    16. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Xie, Ying, 2022. "Service fairness and value of customer information for the stochastic container relocation problem under flexible service policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    17. Sun, Defeng & Tang, Lixin & Baldacci, Roberto & Lim, Andrew, 2021. "An exact algorithm for the unidirectional quay crane scheduling problem with vessel stability," European Journal of Operational Research, Elsevier, vol. 291(1), pages 271-283.
    18. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    19. Aijun Liu & Haiyang Liu & Sang-Bing Tsai & Hui Lu & Xiao Zhang & Jiangtao Wang, 2018. "Using a Hybrid Model on Joint Scheduling of Berths and Quay Cranes—From a Sustainable Perspective," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
    20. Marolt Jakob & Lerher Tone, 2018. "Comparison of Lowest-Slot and Nearest-Stack Heuristics for Storage Assignment of Steel Bar Sets," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 9(2), pages 37-45, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:134:y:2020:i:c:s1366554519302662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.