IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v126y2019icp528-548.html
   My bibliography  Save this article

A strategy-based recursive path choice model for public transit smart card data

Author

Listed:
  • Nassir, Neema
  • Hickman, Mark
  • Ma, Zhen-Liang

Abstract

A recursive logit model is proposed for path choice modeling with transit smart card data in higher-frequency bus and rail services. In such circumstances, it is commonly assumed that passengers may arrive randomly to a stop and may behave according to a “strategy”; such a strategy is associated with a so-called “attractive” set of routes: a passenger selects a set of routes departing from the stop, and will board the next vehicle to depart from among that set of routes. We extend the conventional notion of attractive sets by introducing a measure of “attractiveness” that allows for randomness in the choice of attractive routes.

Suggested Citation

  • Nassir, Neema & Hickman, Mark & Ma, Zhen-Liang, 2019. "A strategy-based recursive path choice model for public transit smart card data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 528-548.
  • Handle: RePEc:eee:transb:v:126:y:2019:i:c:p:528-548
    DOI: 10.1016/j.trb.2018.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517300899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    2. Frejinger, E. & Bierlaire, M. & Ben-Akiva, M., 2009. "Sampling of alternatives for route choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 984-994, December.
    3. Yulin Liu & Jonathan Bunker & Luis Ferreira, 2010. "Transit Users’ Route‐Choice Modelling in Transit Assignment: A Review," Transport Reviews, Taylor & Francis Journals, vol. 30(6), pages 753-769, March.
    4. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    5. Neema Nassir & Mark Hickman & Zhen-Liang Ma, 2015. "Activity detection and transfer identification for public transit fare card data," Transportation, Springer, vol. 42(4), pages 683-705, July.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    7. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
    8. Claude Chriqui & Pierre Robillard, 1975. "Common Bus Lines," Transportation Science, INFORMS, vol. 9(2), pages 115-121, May.
    9. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    10. Guido Gentile & Sang Nguyen & Stefano Pallottino, 2005. "Route Choice on Transit Networks with Online Information at Stops," Transportation Science, INFORMS, vol. 39(3), pages 289-297, August.
    11. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    12. Sang Nguyen & Stefano Pallottino & Michel Gendreau, 1998. "Implicit Enumeration of Hyperpaths in a Logit Model for Transit Networks," Transportation Science, INFORMS, vol. 32(1), pages 54-64, February.
    13. Philippe H. J. Marguier & Avishai Ceder, 1984. "Passenger Waiting Strategies for Overlapping Bus Routes," Transportation Science, INFORMS, vol. 18(3), pages 207-230, August.
    14. Guo, Zhan & Wilson, Nigel H.M., 2011. "Assessing the cost of transfer inconvenience in public transport systems: A case study of the London Underground," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 91-104, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    2. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    3. Mepparambath, Rakhi Manohar & Soh, Yong Sheng & Jayaraman, Vasundhara & Tan, Hong En & Ramli, Muhamad Azfar, 2023. "A novel modelling approach of integrated taxi and transit mode and route choice using city-scale emerging mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    4. Amir Ghorbani & Vahid Ghorbani & Morteza Nazari-Heris & Somayeh Asadi, 2023. "Data Assimilation for Agent-Based Models," Mathematics, MDPI, vol. 11(20), pages 1-25, October.
    5. Taoyuan Yang & Peng Zhao & Xiangming Yao, 2020. "A Method to Estimate URT Passenger Spatial-Temporal Trajectory with Smart Card Data and Train Schedules," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    6. Mai, Tien & Yu, Xinlian & Gao, Song & Frejinger, Emma, 2021. "Routing policy choice prediction in a stochastic network: Recursive model and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 42-58.
    7. Nielsen, Otto Anker & Eltved, Morten & Anderson, Marie Karen & Prato, Carlo Giacomo, 2021. "Relevance of detailed transfer attributes in large-scale multimodal route choice models for metropolitan public transport passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 76-92.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Nurul Hassan & Taha Hossein Rashidi & Neema Nassir, 2021. "Consideration of different travel strategies and choice set sizes in transit path choice modelling," Transportation, Springer, vol. 48(2), pages 723-746, April.
    2. Li, Qianfei & (Will) Chen, Peng & (Marco) Nie, Yu, 2015. "Finding optimal hyperpaths in large transit networks with realistic headway distributions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 98-108.
    3. Cats, Oded & Koutsopoulos, Haris N. & Burghout, Wilco & Toledo, Tomer, 2013. "Effect of real-time transit information on dynamic path choice of passengers," Working papers in Transport Economics 2013:28, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    4. Larsen, Odd I. & Sunde, yvind, 2008. "Waiting time and the role and value of information in scheduled transport," Research in Transportation Economics, Elsevier, vol. 23(1), pages 41-52, January.
    5. Valentina Trozzi & Guido Gentile & Ioannis Kaparias & Michael Bell, 2015. "Effects of Countdown Displays in Public Transport Route Choice Under Severe Overcrowding," Networks and Spatial Economics, Springer, vol. 15(3), pages 823-842, September.
    6. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    7. Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
    8. Padma Seetharaman, 2017. "Modelling risk aversion using a disaggregate stochastic process model in congested transit networks," Public Transport, Springer, vol. 9(3), pages 549-569, October.
    9. Guido Gentile & Sang Nguyen & Stefano Pallottino, 2005. "Route Choice on Transit Networks with Online Information at Stops," Transportation Science, INFORMS, vol. 39(3), pages 289-297, August.
    10. Cortés, Cristián E. & Jara-Moroni, Pedro & Moreno, Eduardo & Pineda, Cristobal, 2013. "Stochastic transit equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 29-44.
    11. Trozzi, Valentina & Gentile, Guido & Bell, Michael G.H. & Kaparias, Ioannis, 2013. "Dynamic user equilibrium in public transport networks with passenger congestion and hyperpaths," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 266-285.
    12. Belgacem Bouzaïene-Ayari & Michel Gendreau & Sang Nguyen, 2001. "Modeling Bus Stops in Transit Networks: A Survey and New Formulations," Transportation Science, INFORMS, vol. 35(3), pages 304-321, August.
    13. Canca, David & Barrena, Eva & De-Los-Santos, Alicia & Andrade-Pineda, José Luis, 2016. "Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 251-267.
    14. Suman, Hemant & Larrain, Homero & Muñoz, Juan Carlos, 2021. "The impact of using a naïve approach in the limited-stop bus service design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 45-61.
    15. Canca, David & Andrade-Pineda, José Luis & De los Santos, Alicia & Calle, Marcos, 2018. "The Railway Rapid Transit frequency setting problem with speed-dependent operation costs," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 494-519.
    16. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    17. Roberto Cominetti & José Correa, 2001. "Common-Lines and Passenger Assignment in Congested Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 250-267, August.
    18. Meyer de Freitas, Lucas & Becker, Henrik & Zimmermann, Maëlle & Axhausen, Kay W., 2019. "Modelling intermodal travel in Switzerland: A recursive logit approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 200-213.
    19. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    20. Evanthia Kazagli & Michel Bierlaire & Matthieu de Lapparent, 2020. "Operational route choice methodologies for practical applications," Transportation, Springer, vol. 47(1), pages 43-74, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:126:y:2019:i:c:p:528-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.