IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v86y2016icp35-55.html
   My bibliography  Save this article

Evaluating the added-value of online bus arrival prediction schemes

Author

Listed:
  • Cats, Oded
  • Loutos, Gerasimos

Abstract

Online predictions of bus arrival times have the potential to reduce the uncertainty associated with bus operations. By better anticipating future conditions, online predictions can reduce perceived and actual passenger travel times as well as facilitate more proactive decision making by service providers. Even though considerable research efforts were devoted to the development of computationally expensive bus arrival prediction schemes, real-world real-time information (RTI) systems are typically based on very simple prediction rules. This paper narrows down the gap between the state-of-the-art and the state-of-the-practice in generating RTI for public transport systems by evaluating the added-value of schemes that integrate instantaneous data and dwell time predictions. The evaluation considers static information and a commonly deployed scheme as a benchmark. The RTI generation algorithms were applied and analyzed for a trunk bus network in Stockholm, Sweden. The schemes are assessed and compared based on their accuracy, reliability, robustness and potential waiting time savings. The impact of RTI on passengers waiting times are compared with those attained by service frequency and regularity improvements. A method which incorporates information on downstream travel conditions outperforms the commonly deployed scheme, leading to a 25% reduction in the mean absolute error. Furthermore, the incorporation of instantaneous travel times improves the prediction accuracy and reliability, and contributes to more robust predictions. The potential waiting time gains associated with the prediction scheme are equivalent to the gains expected when introducing a 60% increase in service frequency, and are not attainable by service regularity improvements.

Suggested Citation

  • Cats, Oded & Loutos, Gerasimos, 2016. "Evaluating the added-value of online bus arrival prediction schemes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 35-55.
  • Handle: RePEc:eee:transa:v:86:y:2016:i:c:p:35-55
    DOI: 10.1016/j.tra.2016.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415300124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Watkins, Kari Edison & Ferris, Brian & Borning, Alan & Rutherford, G. Scott & Layton, David, 2011. "Where Is My Bus? Impact of mobile real-time information on the perceived and actual wait time of transit riders," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 839-848, October.
    2. Nam H. Vu & Ata M. Khan, 2010. "Bus running time prediction using a statistical pattern recognition technique," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(7), pages 625-642, July.
    3. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    4. Brakewood, Candace & Barbeau, Sean & Watkins, Kari, 2014. "An experiment evaluating the impacts of real-time transit information on bus riders in Tampa, Florida," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 409-422.
    5. Chen, Xumei & Yu, Lei & Zhang, Yushi & Guo, Jifu, 2009. "Analyzing urban bus service reliability at the stop, route, and network levels," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(8), pages 722-734, October.
    6. Dziekan, Katrin & Kottenhoff, Karl, 2007. "Dynamic at-stop real-time information displays for public transport: effects on customers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 489-501, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Luyu & Miller, Harvey J., 2020. "Does real-time transit information reduce waiting time? An empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 167-179.
    2. Fusun F. Gonul & Roger A. Solano, 2017. "Empirical insights on improving bus reliability at a rural transit system," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 7(12), pages 309-319, December.
    3. Kent, Jennifer L. & Mulley, Corinne & Stevens, Nick, 2020. "Challenging policies that prohibit public transport use: Travelling with pets as a case study," Transport Policy, Elsevier, vol. 99(C), pages 86-94.
    4. Md Matiur Rahman & Lina Kattan & S. C. Wirasinghe, 2018. "Trade-offs between headway, fare, and real-time bus information under different weather conditions," Public Transport, Springer, vol. 10(2), pages 217-240, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cats, Oded & Loutos, Gerasimos, 2013. "Real-time bus arrival information system: an empirical evaluation," Working papers in Transport Economics 2013:25, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    2. Yingling Fan & Andrew Guthrie & David Levinson, 2015. "Perception of Waiting Time at Transit Stops and Stations," Working Papers 000127, University of Minnesota: Nexus Research Group.
    3. Fan, Yingling & Guthrie, Andrew & Levinson, David, 2016. "Waiting time perceptions at transit stops and stations: Effects of basic amenities, gender, and security," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 251-264.
    4. Md Matiur Rahman & Lina Kattan & S. C. Wirasinghe, 2018. "Trade-offs between headway, fare, and real-time bus information under different weather conditions," Public Transport, Springer, vol. 10(2), pages 217-240, August.
    5. Wang, Po-Chieh & Hsu, Yu-Ting & Hsu, Chia-Wei, 2021. "Analysis of waiting time perception of bus passengers provided with mobile service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 319-336.
    6. Daganzo, Carlos & Anderson, Paul, 2016. "Coordinating Transit Transfers in Real Time," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt25h4r974, Institute of Transportation Studies, UC Berkeley.
    7. Marina Lagune-Reutler & Andrew Guthrie & Yingling Fan & David Levinson, 2015. "Transit Riders' Perception of Waiting Time and Stops' Surrounding Environments," Working Papers 000142, University of Minnesota: Nexus Research Group.
    8. Matsumoto, Takayuki & Hidaka, Kazuyoshi, 2015. "Evaluation the effect of mobile information services for public transportation through the empirical research on commuter trains," Technology in Society, Elsevier, vol. 43(C), pages 144-158.
    9. Liu, Luyu & Miller, Harvey J., 2020. "Does real-time transit information reduce waiting time? An empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 167-179.
    10. Mulley, Corinne & Clifton, Geoffrey Tilden & Balbontin, Camila & Ma, Liang, 2017. "Information for travelling: Awareness and usage of the various sources of information available to public transport users in NSW," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 111-132.
    11. Kari Watkins & Alan Borning & G. Rutherford & Brian Ferris & Brian Gill, 2013. "Attitudes of bus operators towards real-time transit information tools," Transportation, Springer, vol. 40(5), pages 961-980, September.
    12. Anne Brown & Whitney LaValle, 2021. "Hailing a change: comparing taxi and ridehail service quality in Los Angeles," Transportation, Springer, vol. 48(2), pages 1007-1031, April.
    13. Giacomo Lozzi & Valerio Gatta & Edoardo Marcucci, 2018. "European urban freight transport policies and research funding: are priorities and H2020 calls aligned?," REGION, European Regional Science Association, vol. 5, pages 53-71.
    14. Wen Hua & Ghim Ping Ong, 2018. "Effect of information contagion during train service disruption for an integrated rail-bus transit system," Public Transport, Springer, vol. 10(3), pages 571-594, December.
    15. Frei, Charlotte & Mahmassani, Hani S. & Frei, Andreas, 2015. "Making time count: Traveler activity engagement on urban transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 58-70.
    16. Kuo, Pei-Fen & Lord, Dominique, 2013. "Accounting for site-selection bias in before–after studies for continuous distributions: Characteristics and application using speed data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 256-269.
    17. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    18. Oded Cats & Zafeira Gkioulou, 2017. "Modeling the impacts of public transport reliability and travel information on passengers’ waiting-time uncertainty," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 247-270, September.
    19. Van Acker, Veronique & Ho, Loan & Mulley, Corinne, 2021. "“Satisfaction lies in the effort”. Is Gandhi’s quote also true for satisfaction with commuting?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 214-227.
    20. Low, Wai-Ying & Cao, Mengqiu & De Vos, Jonas & Hickman, Robin, 2020. "The journey experience of visually impaired people on public transport in London," Transport Policy, Elsevier, vol. 97(C), pages 137-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:86:y:2016:i:c:p:35-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.