IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v75y2015icp61-83.html
   My bibliography  Save this article

A hierarchical line planning approach for a large-scale high speed rail network: The China case

Author

Listed:
  • Fu, Huiling
  • Nie, Lei
  • Meng, Lingyun
  • Sperry, Benjamin R.
  • He, Zhenhuan

Abstract

Planning a set of train lines in a large-scale high speed rail (HSR) network is typically influenced by issues of longer travel distance, high transport demand, track capacity constraints, and a non-periodic timetable. In this paper, we describe an integrated hierarchical approach to determine line plans by defining the stations and trains according to two classes. Based on a bi-level programming model, heuristics are developed for two consecutive stages corresponding to each classification. The approach determines day-period based train line frequencies as well as a combination of various stopping patterns for a mix of fast trunk line services between major stations and a variety of slower body lines that offer service to intermediate stations, so as to satisfy the predicted passenger transport demand. Efficiencies of the line plans described herein concern passenger travel times, train capacity occupancy, and the number of transfers. Moreover, our heuristics allow for combining many additional conflicting demand–supply factors to design a line plan with predominantly cost-oriented and/or customer-oriented objectives. A range of scenarios are developed to generate three line plans for a real-world example of the HSR network in China using a decision support system. The performance of potential train schedules is evaluated to further examine the feasibility of the obtained line plans through graphical timetables.

Suggested Citation

  • Fu, Huiling & Nie, Lei & Meng, Lingyun & Sperry, Benjamin R. & He, Zhenhuan, 2015. "A hierarchical line planning approach for a large-scale high speed rail network: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 61-83.
  • Handle: RePEc:eee:transa:v:75:y:2015:i:c:p:61-83
    DOI: 10.1016/j.tra.2015.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415000555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Albalate & Germà Bel, 2010. "High-Speed Rail:Lessons for Policy Makers from Experiences Abroad," IREA Working Papers 201003, University of Barcelona, Research Institute of Applied Economics, revised Feb 2010.
    2. Goossens, Jan-Willem & van Hoesel, Stan & Kroon, Leo, 2006. "On solving multi-type railway line planning problems," European Journal of Operational Research, Elsevier, vol. 168(2), pages 403-424, January.
    3. Goverde, Rob M.P., 2007. "Railway timetable stability analysis using max-plus system theory," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 179-201, February.
    4. Chang, Yu-Hern & Yeh, Chung-Hsing & Shen, Ching-Cheng, 2000. "A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 91-106, February.
    5. Mor Kaspi & Tal Raviv, 2013. "Service-Oriented Line Planning and Timetabling for Passenger Trains," Transportation Science, INFORMS, vol. 47(3), pages 295-311, August.
    6. Michael R. Bussieck & Thomas Lindner & Marco E. Lübbecke, 2004. "A fast algorithm for near cost optimal line plans," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(2), pages 205-220, June.
    7. Meng, Lingyun & Zhou, Xuesong, 2014. "Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with network-based cumulative flow variables," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 208-234.
    8. Fu, Xiaowen & Zhang, Anming & Lei, Zheng, 2012. "Will China’s airline industry survive the entry of high-speed rail?," Research in Transportation Economics, Elsevier, vol. 35(1), pages 13-25.
    9. Guan, J.F. & Yang, Hai & Wirasinghe, S.C., 2006. "Simultaneous optimization of transit line configuration and passenger line assignment," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 885-902, December.
    10. G. Caimi & F. Chudak & M. Fuchsberger & M. Laumanns & R. Zenklusen, 2011. "A New Resource-Constrained Multicommodity Flow Model for Conflict-Free Train Routing and Scheduling," Transportation Science, INFORMS, vol. 45(2), pages 212-227, May.
    11. Jan-Willem Goossens & Stan van Hoesel & Leo Kroon, 2004. "A Branch-and-Cut Approach for Solving Railway Line-Planning Problems," Transportation Science, INFORMS, vol. 38(3), pages 379-393, August.
    12. Claessens, M. T. & van Dijk, N. M. & Zwaneveld, P. J., 1998. "Cost optimal allocation of rail passenger lines," European Journal of Operational Research, Elsevier, vol. 110(3), pages 474-489, November.
    13. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenliang Zhou & Wenzhuang Fan & Xiaorong You & Lianbo Deng, 2019. "Demand-Oriented Train Timetabling Integrated with Passenger Train-Booking Decisions," Sustainability, MDPI, vol. 11(18), pages 1-34, September.
    2. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    3. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    4. Evert Vermeir & Javier Durán-Micco & Pieter Vansteenwegen, 2022. "The grid based approach, a fast local evaluation technique for line planning," 4OR, Springer, vol. 20(4), pages 603-635, December.
    5. Wenliang Zhou & Jing Kang & Jin Qin & Sha Li & Yu Huang, 2022. "Robust Optimization of High-Speed Railway Train Plan Based on Multiple Demand Scenarios," Mathematics, MDPI, vol. 10(8), pages 1-26, April.
    6. Zhou, Wenliang & Tian, Junli & Xue, Lijuan & Jiang, Min & Deng, Lianbo & Qin, Jin, 2017. "Multi-periodic train timetabling using a period-type-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 144-173.
    7. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    8. Tatsuki Yamauchi & Mizuyo Takamatsu & Shinji Imahori, 2023. "Optimizing train stopping patterns for congestion management," Public Transport, Springer, vol. 15(1), pages 1-29, March.
    9. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    10. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    11. Shuo Zhao & Xiwei Mi & Zhenyi Li, 2019. "A Stop-Probability Approach for O-D Service Frequency on High-Speed Railway Lines," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    12. Wenliang Zhou & Yujun Huang & Naijie Chai & Bo Li & Xiang Li, 2022. "A Line Planning Optimization Model for High-Speed Railway Network Merging Newly-Built Railway Lines," Mathematics, MDPI, vol. 10(17), pages 1-34, September.
    13. Wu, Xin & Nie, Lei & Xu, Meng & Zhao, Lili, 2019. "Distribution planning problem for a high-speed rail catering service considering time-varying demands and pedestrian congestion: A lot-sizing-based model and decomposition algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 61-89.
    14. Tangjian Wei & Feng Shi & Guangming Xu, 2019. "Estimation of Time-Varying Passenger Demand for High Speed Rail System," Complexity, Hindawi, vol. 2019, pages 1-24, March.
    15. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    16. Kang, Liujiang & Li, Hao & Sun, Huijun & Wu, Jianjun & Cao, Zhiguang & Buhigiro, Nsabimana, 2021. "First train timetabling and bus service bridging in intermodal bus-and-train transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 443-462.
    17. Meng, Lingyun & Zhou, Xuesong, 2019. "An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 1-28.
    18. Jinfei Wu & Xinghua Shan & Jingxia Sun & Shengyuan Weng & Shuo Zhao, 2023. "Daily Line Planning Optimization for High-Speed Railway Lines," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    19. Bi, Mingkai & He, Shiwei & Xu, Wangtu (Ato), 2019. "Express delivery with high-speed railway: Definitely feasible or just a publicity stunt," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 165-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    2. Jinfei Wu & Xinghua Shan & Jingxia Sun & Shengyuan Weng & Shuo Zhao, 2023. "Daily Line Planning Optimization for High-Speed Railway Lines," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    4. Shuo Zhao & Xiwei Mi & Zhenyi Li, 2019. "A Stop-Probability Approach for O-D Service Frequency on High-Speed Railway Lines," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    5. Schiewe, Alexander & Schiewe, Philine & Schmidt, Marie, 2019. "The line planning routing game," European Journal of Operational Research, Elsevier, vol. 274(2), pages 560-573.
    6. Wenliang Zhou & Xiang Li & Xin Shi, 2023. "Joint Optimization of Time-Dependent Line Planning and Differential Pricing with Passenger Train Choice in High-Speed Railway Networks," Mathematics, MDPI, vol. 11(6), pages 1-28, March.
    7. Wenliang Zhou & Yujun Huang & Naijie Chai & Bo Li & Xiang Li, 2022. "A Line Planning Optimization Model for High-Speed Railway Network Merging Newly-Built Railway Lines," Mathematics, MDPI, vol. 10(17), pages 1-34, September.
    8. Gattermann, P. & Schiewe, A. & Schmidt, M.E., 2014. "The line planning routing game," ERIM Report Series Research in Management ERS-2014-017-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Canca, David & Barrena, Eva & De-Los-Santos, Alicia & Andrade-Pineda, José Luis, 2016. "Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 251-267.
    10. Goerigk, Marc & Schmidt, Marie, 2017. "Line planning with user-optimal route choice," European Journal of Operational Research, Elsevier, vol. 259(2), pages 424-436.
    11. Mathias Michaelis & Anita Schöbel, 2009. "Integrating line planning, timetabling, and vehicle scheduling: a customer-oriented heuristic," Public Transport, Springer, vol. 1(3), pages 211-232, August.
    12. David Canca & Alicia De-Los-Santos & Gilbert Laporte & Juan A. Mesa, 2016. "A general rapid network design, line planning and fleet investment integrated model," Annals of Operations Research, Springer, vol. 246(1), pages 127-144, November.
    13. Guan, J.F. & Yang, Hai & Wirasinghe, S.C., 2006. "Simultaneous optimization of transit line configuration and passenger line assignment," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 885-902, December.
    14. Canca, David & Andrade-Pineda, José Luis & De los Santos, Alicia & Calle, Marcos, 2018. "The Railway Rapid Transit frequency setting problem with speed-dependent operation costs," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 494-519.
    15. Meng, Lingyun & Zhou, Xuesong, 2019. "An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 1-28.
    16. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    17. Tangjian Wei & Feng Shi & Guangming Xu, 2019. "Estimation of Time-Varying Passenger Demand for High Speed Rail System," Complexity, Hindawi, vol. 2019, pages 1-24, March.
    18. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    19. Xin Zhang & Lei Nie & Xin Wu & Yu Ke, 2020. "How to Optimize Train Stops under Diverse Passenger Demand: a New Line Planning Method for Large-Scale High-Speed Rail Networks," Networks and Spatial Economics, Springer, vol. 20(4), pages 963-988, December.
    20. van Lieshout, R.N. & Bouman, P.C. & Huisman, D., 2018. "Determining and Evaluating Alternative Line Plans in (Near) Out-of-Control Situations," Econometric Institute Research Papers EI2018-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:75:y:2015:i:c:p:61-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.