IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i15-16p1210-1217.html
   My bibliography  Save this article

Testing for lack of dependence between functional variables

Author

Listed:
  • Aghoukeng Jiofack, Jean Gérard
  • Nkiet, Guy Martial

Abstract

We introduce a test for the lack of dependence between two random variables valued into real Hilbert spaces. Here, we consider lack of dependence in the broader sense, that is, non-correlation. The test statistic is similar to the one proposed by Kokoszka et al. (2008) for testing for no effect in the linear functional model. The asymptotic distribution under the null hypothesis of this statistic is obtained as well as a consistency result for the proposed test. Applications to the case of functional variables are indicated and simulations show, in this context, the performance of the proposed method.

Suggested Citation

  • Aghoukeng Jiofack, Jean Gérard & Nkiet, Guy Martial, 2010. "Testing for lack of dependence between functional variables," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1210-1217, August.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:15-16:p:1210-1217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00098-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hervé Cardot & Frédéric Ferraty & André Mas & Pascal Sarda, 2003. "Testing Hypotheses in the Functional Linear Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 241-255, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kokoszka, Piotr & Reimherr, Matthew & Wölfing, Nikolas, 2016. "A randomness test for functional panels," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 37-53.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babii, Andrii, 2020. "Honest Confidence Sets In Nonparametric Iv Regression And Other Ill-Posed Models," Econometric Theory, Cambridge University Press, vol. 36(4), pages 658-706, August.
    2. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    3. Hans-Georg Müller & Ying Zhang, 2005. "Time-Varying Functional Regression for Predicting Remaining Lifetime Distributions from Longitudinal Trajectories," Biometrics, The International Biometric Society, vol. 61(4), pages 1064-1075, December.
    4. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    5. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    6. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    7. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    8. Xu, Jianjun & Cui, Wenquan, 2022. "A new RKHS-based global testing for functional linear model," Statistics & Probability Letters, Elsevier, vol. 182(C).
    9. Ping Yu & Zhongzhan Zhang & Jiang Du, 2016. "A test of linearity in partial functional linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 953-969, November.
    10. Bücher, Axel & Dette, Holger & Wieczorek, Gabriele, 2011. "Testing model assumptions in functional regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1472-1488, November.
    11. Escanciano, Juan Carlos & Mayoral, Silvia, 2010. "Data-driven smooth tests for the martingale difference hypothesis," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1983-1998, August.
    12. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    13. Yue Wang & Joseph G. Ibrahim & Hongtu Zhu, 2020. "Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study," Biometrics, The International Biometric Society, vol. 76(4), pages 1109-1119, December.
    14. Jadhav, Sneha & Ma, Shuangge, 2021. "An association test for functional data based on Kendall’s Tau," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. Merve Yasemin Tekbudak & Marcela Alfaro-Córdoba & Arnab Maity & Ana-Maria Staicu, 2019. "A comparison of testing methods in scalar-on-function regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 411-436, September.
    16. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2010. "Measures of influence for the functional linear model with scalar response," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 327-339, February.
    17. Chiou, Jeng-Min & Muller, Hans-Georg, 2007. "Diagnostics for functional regression via residual processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4849-4863, June.
    18. Horváth, Lajos & Reeder, Ron, 2012. "Detecting changes in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 310-334.
    19. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    20. Lili Xia & Tingyu Lai & Zhongzhan Zhang, 2023. "An Adaptive-to-Model Test for Parametric Functional Single-Index Model," Mathematics, MDPI, vol. 11(8), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:15-16:p:1210-1217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.