IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v151y2016icp37-53.html
   My bibliography  Save this article

A randomness test for functional panels

Author

Listed:
  • Kokoszka, Piotr
  • Reimherr, Matthew
  • Wölfing, Nikolas

Abstract

Functional panels are collections of functional time series, and arise often in the study of high frequency multivariate data. We develop a portmanteau style test to determine if the cross-sections of such a panel are independent and identically distributed. Our framework allows the number of functional projections and/or the number of time series to grow with the sample size. A large sample justification is based on a new central limit theorem for random vectors of increasing dimension. With a proper normalization, the limit is standard normal, potentially making this result easily applicable in other FDA context in which projections on a subspace of increasing dimension are used. The test is shown to have correct size and excellent power using simulated panels whose random structure mimics the realistic dependence encountered in real panel data. It is expected to find application in climatology, finance, ecology, economics, and geophysics. We apply it to Southern Pacific sea surface temperature data, precipitation patterns in the South-West United States, and temperature curves in Germany.

Suggested Citation

  • Kokoszka, Piotr & Reimherr, Matthew & Wölfing, Nikolas, 2016. "A randomness test for functional panels," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 37-53.
  • Handle: RePEc:eee:jmvana:v:151:y:2016:i:c:p:37-53
    DOI: 10.1016/j.jmva.2016.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1630046X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
    2. Hervé Cardot & Frédéric Ferraty & André Mas & Pascal Sarda, 2003. "Testing Hypotheses in the Functional Linear Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 241-255, March.
    3. Horváth, Lajos & Hušková, Marie & Rice, Gregory, 2013. "Test of independence for functional data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 100-119.
    4. Aghoukeng Jiofack, Jean Gérard & Nkiet, Guy Martial, 2010. "Testing for lack of dependence between functional variables," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1210-1217, August.
    5. Pena D. & Rodriguez J., 2002. "A Powerful Portmanteau Test of Lack of Fit for Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 601-610, June.
    6. Siegfried Hörmann & Łukasz Kidziński & Marc Hallin, 2015. "Dynamic functional principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 319-348, March.
    7. Gabrys, Robertas & Kokoszka, Piotr, 2007. "Portmanteau Test of Independence for Functional Observations," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1338-1348, December.
    8. Liebl, Dominik, 2013. "Modeling and Forecasting Electricity Spot Prices: A Functional Data Perspective," MPRA Paper 50881, University Library of Munich, Germany.
    9. Bo Fu, 2002. "Testing model adequacy for dynamic panel data with intercorrelation," Biometrika, Biometrika Trust, vol. 89(3), pages 591-602, August.
    10. Fremdt, Stefan & Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef G., 2014. "Functional data analysis with increasing number of projections," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 313-332.
    11. Thomas J. Fisher & Colin M. Gallagher, 2012. "New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 777-787, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    2. Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.
    3. Klepsch, J. & Klüppelberg, C. & Wei, T., 2017. "Prediction of functional ARMA processes with an application to traffic data," Econometrics and Statistics, Elsevier, vol. 1(C), pages 128-149.
    4. Cerovecki, Clément & Hörmann, Siegfried, 2017. "On the CLT for discrete Fourier transforms of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 282-295.
    5. Amira Elayouty & Marian Scott & Claire Miller, 2022. "Time-Varying Functional Principal Components for Non-Stationary EpCO $$_2$$ 2 in Freshwater Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 506-522, September.
    6. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    7. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    8. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2022. "Data-driven portmanteau tests for time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 675-698, September.
    9. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    11. Christian Gourieroux & Joann Jasiak, 2023. "Generalized Covariance Estimator," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1315-1327, October.
    12. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    13. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    14. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
    15. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2019. "Tests for conditional heteroscedasticity with functional data and goodness-of-fit tests for FGARCH models," MPRA Paper 93048, University Library of Munich, Germany.
    16. van Delft, Anne & Eichler, Michael, 2020. "A note on Herglotz’s theorem for time series on function spaces," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3687-3710.
    17. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised Aug 2022.
    18. Valentina Masarotto & Victor M. Panaretos & Yoav Zemel, 2019. "Procrustes Metrics on Covariance Operators and Optimal Transportation of Gaussian Processes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 172-213, February.
    19. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2021. "Testing serial independence with functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 603-629, September.
    20. Leonid Torgovitski, 2015. "A Darling–Erdős-type CUSUM-procedure for functional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 1-27, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:151:y:2016:i:c:p:37-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.