Advanced Search
MyIDEAS: Login to save this article or follow this journal

The expected discounted penalty at ruin in the Erlang (2) risk process

Contents:

Author Info

  • Sun, Li-Juan
Registered author(s):

    Abstract

    In this paper, under the Erlang (2) risk process, we examine the expected discounted value of a penalty at ruin, which is considered as a function of the initial surplus. We first show that the expected discounted penalty function satisfies an integro-differential equation, and give its initial value, as well as its Laplace transform. We further prove that this function is twice differentiable, and satisfies a defective renewal equation. An explicit expression for the solution of this equation can be derived. The associated compound geometric distribution and "claim size" distribution are also studied.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V1D-4FGXPHS-1/2/007bb0d2ddb18d908acbf6813d02009e
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 72 (2005)
    Issue (Month): 3 (May)
    Pages: 205-217

    as in new window
    Handle: RePEc:eee:stapro:v:72:y:2005:i:3:p:205-217

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    Related research

    Keywords: Erlang (2) risk process Expected discounted penalty function Ruin probability;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Cai, Jun & Dickson, David C. M., 2002. "On the expected discounted penalty function at ruin of a surplus process with interest," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 389-404, June.
    2. Dickson, David C. M. & Hipp, Christian, 2001. "On the time to ruin for Erlang(2) risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 333-344, December.
    3. Li, Shuanming & Garrido, Jose, 2004. "On ruin for the Erlang(n) risk process," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 391-408, June.
    4. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    5. Dufresne, Francois & Gerber, Hans U., 1988. "The surpluses immediately before and at ruin, and the amount of the claim causing ruin," Insurance: Mathematics and Economics, Elsevier, vol. 7(3), pages 193-199, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Huang, Tao & Zhao, Ruiqing & Tang, Wansheng, 2009. "Risk model with fuzzy random individual claim amount," European Journal of Operational Research, Elsevier, vol. 192(3), pages 879-890, February.
    2. Dickson, David C.M. & Li, Shuanming, 2013. "The distributions of the time to reach a given level and the duration of negative surplus in the Erlang(2) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 490-497.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:72:y:2005:i:3:p:205-217. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.