Advanced Search
MyIDEAS: Login

Large deviations for heavy-tailed random sums in compound renewal model


Author Info

  • Tang, Qihe
  • Su, Chun
  • Jiang, Tao
  • Zhang, Jinsong


In the present paper we investigate the precise large deviations for heavy-tailed random sums. First, we obtain a result which improves the relative result in Klüppelberg and Mikosch (J. Appl. Probab. 34 (1997) 293). Then we introduce a more realistic risk model than classical ones, named the compound renewal model, and establish the precise large deviations in this model.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Statistics & Probability Letters.

Volume (Year): 52 (2001)
Issue (Month): 1 (March)
Pages: 91-100

as in new window
Handle: RePEc:eee:stapro:v:52:y:2001:i:1:p:91-100

Contact details of provider:
Web page:

Order Information:

Related research

Keywords: (Compound) Renewal risk model (Extended) Regular variation Large deviations Renewal counting process;


No references listed on IDEAS
You can help add them by filling out this form.


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
  2. Lu, Dawei, 2012. "Lower bounds of large deviation for sums of long-tailed claims in a multi-risk model," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1242-1250.
  3. Liu, Li, 2009. "Precise large deviations for dependent random variables with heavy tails," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1290-1298, May.
  4. Baltrunas, Aleksandras & Leipus, Remigijus & Siaulys, Jonas, 2008. "Precise large deviation results for the total claim amount under subexponential claim sizes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1206-1214, August.
  5. Chen, Yiqing & Yuen, Kam C., 2012. "Precise large deviations of aggregate claims in a size-dependent renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 457-461.
  6. Liu, Yan, 2007. "Precise large deviations for negatively associated random variables with consistently varying tails," Statistics & Probability Letters, Elsevier, vol. 77(2), pages 181-189, January.
  7. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
  8. Lin, Jianxi, 2008. "The general principle for precise large deviations of heavy-tailed random sums," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 749-758, April.
  9. He, Wei & Cheng, Dongya & Wang, Yuebao, 2013. "Asymptotic lower bounds of precise large deviations with nonnegative and dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 331-338.
  10. Chen, Yu & Zhang, Weiping, 2007. "Large deviations for random sums of negatively dependent random variables with consistently varying tails," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 530-538, March.
  11. Leipus, Remigijus & Siaulys, Jonas, 2007. "Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 498-508, May.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:52:y:2001:i:1:p:91-100. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.