IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v69y1997i1p1-24.html
   My bibliography  Save this article

Minimum volume sets and generalized quantile processes

Author

Listed:
  • Polonik, Wolfgang

Abstract

Bahadur-Kiefer approximations for generalized quantile processes as defined in Einmahl and Mason (1992) are given which generalize results for the classical one-dimensional quantile processes. An as application we consider the special case of the volume process of minimum volume sets in classes of subsets of the d-dimensional Euclidean space. Minimum volume sets can be used as estimators of level sets of a density and might be useful in cluster analysis. The volume of minimum volume sets itself can be used for robust estimation of scale. Consistency results and rates of convergence for minimum volume sets are given. Rates of convergence of minimum volume sets can be used to obtain Bahadur-Kiefer approximations for the corresponding volume process and vice versa. A generalization of the minimum volume approach to non-i.i.d. problems like regression and spectral analysis of time series is discussed.

Suggested Citation

  • Polonik, Wolfgang, 1997. "Minimum volume sets and generalized quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 1-24, July.
  • Handle: RePEc:eee:spapps:v:69:y:1997:i:1:p:1-24
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00028-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dahlhaus, Rainer, 1988. "Empirical spectral processes and their applications to time series analysis," Stochastic Processes and their Applications, Elsevier, vol. 30(1), pages 69-83, November.
    2. Nolan, D., 1992. "Asymptotics for multivariate trimming," Stochastic Processes and their Applications, Elsevier, vol. 42(1), pages 157-169, August.
    3. Polonik, W., 1995. "Density Estimation under Qualitative Assumptions in Higher Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 55(1), pages 61-81, October.
    4. Einmahl, J. H.J. & Mason, D.M., 1992. "Generalized quantile processes," Other publications TiSEM b2a76bac-045d-457f-869f-d, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berthet, Philippe & Einmahl, John, 2020. "Cube Root Weak Convergence of Empirical Estimators of a Density Level Set," Other publications TiSEM 69103be2-c944-4ca1-b9e1-2, Tilburg University, School of Economics and Management.
    2. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 679-702, September.
    3. Burman, Prabir & Polonik, Wolfgang, 2009. "Multivariate mode hunting: Data analytic tools with measures of significance," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1198-1218, July.
    4. Pavlides, Marios G. & Wellner, Jon A., 2012. "Nonparametric estimation of multivariate scale mixtures of uniform densities," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 71-89.
    5. Di, J. & Kolaczyk, E., 2010. "Complexity-penalized estimation of minimum volume sets for dependent data," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1910-1926, October.
    6. Hlubinka, Daniel & Šiman, Miroslav, 2013. "On elliptical quantiles in the quantile regression setup," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 163-171.
    7. Daniel Hlubinka & Miroslav Šiman, 2015. "On generalized elliptical quantiles in the nonlinear quantile regression setup," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 249-264, June.
    8. Baíllo, Amparo, 2003. "Total error in a plug-in estimator of level sets," DES - Working Papers. Statistics and Econometrics. WS ws032806, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    10. Polonik, Wolfgang & Yao, Qiwei, 2002. "Set-Indexed Conditional Empirical and Quantile Processes Based on Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 234-255, February.
    11. Moritz Herrmann & Fabian Scheipl, 2021. "A Geometric Perspective on Functional Outlier Detection," Stats, MDPI, vol. 4(4), pages 1-41, November.
    12. Ren, Qunshu & Mojirsheibani, Majid, 2008. "Nonparametric estimation of level sets under minimal assumptions," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3029-3033, December.
    13. Polonik, Wolfgang & Wang, Zailong, 2010. "PRIM analysis," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 525-540, March.
    14. Baíllo, Amparo, 2003. "Total error in a plug-in estimator of level sets," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 411-417, December.
    15. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    16. Di Bucchianico, A. & Einmahl, J.H.J. & Mushkudiani, N.A., 2001. "Smallest nonparametric tolerance regions," Other publications TiSEM 436f9be2-d0ad-49af-b6df-9, Tilburg University, School of Economics and Management.
    17. Elena Di Bernardino & Thomas Laloë & Véronique Maume-Deschamps & Clémentine Prieur, 2013. "Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory," Post-Print hal-00580624, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jin, 2019. "Asymptotics of generalized depth-based spread processes and applications," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 363-380.
    2. Polonik, Wolfgang & Yao, Qiwei, 2002. "Set-Indexed Conditional Empirical and Quantile Processes Based on Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 234-255, February.
    3. Can, S.U. & Mikosch, T. & Samorodnitsky, G., 2010. "Weak Convergence of the function-indexed integrated periodogram for infinite variance processes," Other publications TiSEM 3be90f1b-2f53-4987-b46e-c, Tilburg University, School of Economics and Management.
    4. Pavlides, Marios G. & Wellner, Jon A., 2012. "Nonparametric estimation of multivariate scale mixtures of uniform densities," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 71-89.
    5. Gao, Fuchang & Wellner, Jon A., 2007. "Entropy estimate for high-dimensional monotonic functions," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1751-1764, October.
    6. Fasen-Hartmann, Vicky & Mayer, Celeste, 2023. "Empirical spectral processes for stationary state space models," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 319-354.
    7. Averous, Jean & Meste, Michel, 1997. "Median Balls: An Extension of the Interquantile Intervals to Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 222-241, November.
    8. Barme-Delcroix, Marie-Francoise & Gather, Ursula, 2007. "Limit laws for multidimensional extremes," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1750-1755, December.
    9. Kim, Jeankyung, 2000. "Rate of convergence of depth contours: with application to a multivariate metrically trimmed mean," Statistics & Probability Letters, Elsevier, vol. 49(4), pages 393-400, October.
    10. Serfling, Robert, 2002. "Generalized Quantile Processes Based on Multivariate Depth Functions, with Applications in Nonparametric Multivariate Analysis," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 232-247, October.
    11. Nolan, D., 1999. "On min-max majority and deepest points," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 325-333, July.
    12. Nguyen, Hung T. & Wu, Berlin, 2006. "Random and fuzzy sets in coarse data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 70-85, November.
    13. Mikosch, Thomas & Zhao, Yuwei, 2015. "The integrated periodogram of a dependent extremal event sequence," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3126-3169.
    14. Croux, Christophe & Haesbroeck, Gentiane, 1997. "An easy way to increase the finite-sample efficiency of the resampled minimum volume ellipsoid estimator," Computational Statistics & Data Analysis, Elsevier, vol. 25(2), pages 125-141, July.
    15. Alexander Zaigraev & Magdalena Alama-Bućko, 2018. "Optimal choice of order statistics under confidence region estimation in case of large samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 283-305, April.
    16. Wang, Jin, 2018. "A note on weak convergence of general halfspace depth trimmed means," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 50-56.
    17. Nadja Klein & Thomas Kneib, 2020. "Directional bivariate quantiles: a robust approach based on the cumulative distribution function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 225-260, June.
    18. Alexander Zaigraev & Magdalena Alama-Bućko, 2013. "On optimal choice of order statistics in large samples for the construction of confidence regions for the location and scale," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 577-593, May.
    19. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    20. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:69:y:1997:i:1:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.