IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v30y1988i1p69-83.html
   My bibliography  Save this article

Empirical spectral processes and their applications to time series analysis

Author

Listed:
  • Dahlhaus, Rainer

Abstract

This paper is concerned with the estimation of the spectral measure of a stationary process. Empirical spectral processes indexed by classes of functions are considered and an equicontinuity condition and a weak convergence result for the resulting spectral process are proved. Furthermore, some applications to time series analysis are given.

Suggested Citation

  • Dahlhaus, Rainer, 1988. "Empirical spectral processes and their applications to time series analysis," Stochastic Processes and their Applications, Elsevier, vol. 30(1), pages 69-83, November.
  • Handle: RePEc:eee:spapps:v:30:y:1988:i:1:p:69-83
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(88)90076-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Can, S.U. & Mikosch, T. & Samorodnitsky, G., 2010. "Weak Convergence of the function-indexed integrated periodogram for infinite variance processes," Other publications TiSEM 3be90f1b-2f53-4987-b46e-c, Tilburg University, School of Economics and Management.
    2. Ruprecht Puchstein & Philip Preuß, 2016. "Testing for Stationarity in Multivariate Locally Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 3-29, January.
    3. Kokoszka, Piotr & Mikosch, Thomas, 2000. "The periodogram at the Fourier frequencies," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 49-79, March.
    4. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
    5. Fasen-Hartmann, Vicky & Mayer, Celeste, 2023. "Empirical spectral processes for stationary state space models," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 319-354.
    6. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    7. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    8. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    9. Mikosch, Thomas & Zhao, Yuwei, 2015. "The integrated periodogram of a dependent extremal event sequence," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3126-3169.
    10. Kokoszka, P. & Mikosch, T., 1997. "The integrated periodogram for long-memory processes with finite or infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 66(1), pages 55-78, February.
    11. Takayuki Shiohama & Masanobu Taniguchi, 2001. "Sequential Estimation for a Functional of the Spectral Density of a Gaussian Stationary Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 142-158, March.
    12. Jean‐Marc Bardet & Paul Doukhan & José Rafael León, 2008. "Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle's estimate," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 906-945, September.
    13. Mikosch, T. & Norvaisa, R., 1997. "Uniform convergence of the empirical spectral distribution function," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 85-114, October.
    14. Polonik, Wolfgang, 1997. "Minimum volume sets and generalized quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:30:y:1988:i:1:p:69-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.