IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v150y2022icp802-818.html
   My bibliography  Save this article

Adaptive Huber regression on Markov-dependent data

Author

Listed:
  • Fan, Jianqing
  • Guo, Yongyi
  • Jiang, Bai

Abstract

High-dimensional linear regression has been intensively studied in the community of statistics in the last two decades. For the convenience of theoretical analyses, classical methods usually assume independent observations and sub-Gaussian-tailed errors. However, neither of them hold in many real high-dimensional time-series data. Recently (Sun et al., 2019) proposed Adaptive Huber Regression (AHR) to address the issue of heavy-tailed errors. They discover that the robustification parameter of the Huber loss should adapt to the sample size, the dimensionality, and the moments of the heavy-tailed errors. We progress in a vertical direction and justify AHR on dependent observations. Specifically, we consider an important dependence structure — Markov dependence. Our results show that the Markov dependence impacts on the adaption of the robustification parameter and the estimation of regression coefficients in the way that the sample size should be discounted by a factor depending on the spectral gap of the underlying Markov chain.

Suggested Citation

  • Fan, Jianqing & Guo, Yongyi & Jiang, Bai, 2022. "Adaptive Huber regression on Markov-dependent data," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 802-818.
  • Handle: RePEc:eee:spapps:v:150:y:2022:i:c:p:802-818
    DOI: 10.1016/j.spa.2019.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919302273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    2. Lan Wang & Bo Peng & Runze Li, 2015. "A High-Dimensional Nonparametric Multivariate Test for Mean Vector," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1658-1669, December.
    3. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    4. Wei Tang & Steven L Bressler & Chad M Sylvester & Gordon L Shulman & Maurizio Corbetta, 2012. "Measuring Granger Causality between Cortical Regions from Voxelwise fMRI BOLD Signals with LASSO," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-14, May.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    7. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    8. Jianqing Fan & Quefeng Li & Yuyan Wang, 2017. "Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 247-265, January.
    9. Simone Gupta & Shannon E. Ellis & Foram N. Ashar & Anna Moes & Joel S. Bader & Jianan Zhan & Andrew B. West & Dan E. Arking, 2014. "Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    10. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    11. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    12. Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
    13. Miasojedow, Błażej, 2014. "Hoeffding’s inequalities for geometrically ergodic Markov chains on general state space," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 115-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    2. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Han, Dongxiao & Huang, Jian & Lin, Yuanyuan & Shen, Guohao, 2022. "Robust post-selection inference of high-dimensional mean regression with heavy-tailed asymmetric or heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 230(2), pages 416-431.
    4. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    5. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    6. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    7. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    8. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    9. Moench, Emanuel & Soofi-Siavash, Soroosh, 2022. "What moves treasury yields?," Journal of Financial Economics, Elsevier, vol. 146(3), pages 1016-1043.
    10. Zhu, Ying, 2015. "Sparse Linear Models and l1−Regularized 2SLS with High-Dimensional Endogenous Regressors and Instruments," MPRA Paper 81217, University Library of Munich, Germany.
    11. Yoshimasa Uematsu & Takashi Yamagata, 2020. "Inference in Weak Factor Models," ISER Discussion Paper 1080, Institute of Social and Economic Research, Osaka University.
    12. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
    13. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    14. Zhu, Ying, 2013. "Sparse Linear Models and Two-Stage Estimation in High-Dimensional Settings with Possibly Many Endogenous Regressors," MPRA Paper 49846, University Library of Munich, Germany.
    15. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, Osaka University, revised Mar 2020.
    16. Simon Freyaldenhoven, 2020. "Identification Through Sparsity in Factor Models," Working Papers 20-25, Federal Reserve Bank of Philadelphia.
    17. Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021. "Augmented factor models with applications to validating market risk factors and forecasting bond risk premia," Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
    18. Lan, Wei & Zhong, Ping-Shou & Li, Runze & Wang, Hansheng & Tsai, Chih-Ling, 2016. "Testing a single regression coefficient in high dimensional linear models," Journal of Econometrics, Elsevier, vol. 195(1), pages 154-168.
    19. Luo, Jiyu & Sun, Qiang & Zhou, Wen-Xin, 2022. "Distributed adaptive Huber regression," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    20. Liu, Lu & Zhang, Xiang, 2019. "Financialization and commodity excess spillovers," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 195-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:150:y:2022:i:c:p:802-818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.