IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i3p1004-1045.html
   My bibliography  Save this article

Nonparametric estimation of the local Hurst function of multifractional Gaussian processes

Author

Listed:
  • Bardet, Jean-Marc
  • Surgailis, Donatas

Abstract

A new nonparametric estimator of the local Hurst function of a multifractional Gaussian process based on the increment ratio (IR) statistic is defined. In a general frame, the point-wise and uniform weak and strong consistency and a multidimensional central limit theorem for this estimator are established. Similar results are obtained for a refinement of the generalized quadratic variations (QV) estimator. The example of the multifractional Brownian motion is studied in detail. A simulation study is included showing that the IR-estimator is more accurate than the QV-estimator.

Suggested Citation

  • Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:3:p:1004-1045
    DOI: 10.1016/j.spa.2012.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912002499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Moment bounds and central limit theorems for Gaussian subordinated arrays," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 457-473.
    2. Benassi, Albert & Cohen, Serge & Istas, Jacques, 1998. "Identifying the multifractional function of a Gaussian process," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 337-345, August.
    3. Albert Benassi & Pierre Bertrand & Serge Cohen & Jacques Istas, 2000. "Identification of the Hurst Index of a Step Fractional Brownian Motion," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 101-111, January.
    4. Stoev, Stilian A. & Taqqu, Murad S., 2006. "How rich is the class of multifractional Brownian motions?," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 200-221, February.
    5. Bégyn, Arnaud, 2007. "Functional limit theorems for generalized quadratic variations of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1848-1869, December.
    6. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    7. Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
    8. Surgailis, Donatas, 2008. "Nonhomogeneous fractional integration and multifractional processes," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 171-198, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.
    2. Ran Wang & Yimin Xiao, 2022. "Exact Uniform Modulus of Continuity and Chung’s LIL for the Generalized Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2442-2479, December.
    3. Matthieu Garcin, 2019. "Hurst Exponents And Delampertized Fractional Brownian Motions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-26, August.
    4. Joachim Lebovits & Mark Podolskij, 2016. "Estimation of the global regularity of a multifractional Brownian motion," CREATES Research Papers 2016-33, Department of Economics and Business Economics, Aarhus University.
    5. Li, Yuan & Pakkanen, Mikko S. & Veraart, Almut E.D., 2023. "Limit theorems for the realised semicovariances of multivariate Brownian semistationary processes," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 202-231.
    6. Mazur, Stepan & Otryakhin, Dmitry & Podolskij, Mark, 2018. "Estimation of the linear fractional stable motion," Working Papers 2018:3, Örebro University, School of Business.
    7. Bianchi, Sergio & Pianese, Augusto, 2018. "Time-varying Hurst–Hölder exponents and the dynamics of (in)efficiency in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 64-75.
    8. Sixian Jin & Qidi Peng & Henry Schellhorn, 2018. "Estimation of the pointwise Hölder exponent of hidden multifractional Brownian motion using wavelet coefficients," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 113-140, April.
    9. Mathias Mørck Ljungdahl & Mark Podolskij, 2020. "A minimal contrast estimator for the linear fractional stable motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 381-413, July.
    10. Antoine Echelard & Jacques Lévy Véhel & Anne Philippe, 2015. "Statistical Estimation for a Class of Self-Regulating Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 485-503, June.
    11. Matthieu Garcin, 2018. "Hurst exponents and delampertized fractional Brownian motions," Working Papers hal-01919754, HAL.
    12. Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.
    13. Peng, Qidi & Zhao, Ran, 2018. "A general class of multifractional processes and stock price informativeness," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 248-267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vu, Huong T.L. & Richard, Frédéric J.P., 2020. "Statistical tests of heterogeneity for anisotropic multifractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4667-4692.
    2. Frezza, Massimiliano, 2012. "Modeling the time-changing dependence in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1510-1520.
    3. Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
    4. Pierre R. Bertrand & Marie-Eliette Dury & Bing Xiao, 2020. "A study of Chinese market efficiency, Shanghai versus Shenzhen: Evidence based on multifractional models," Post-Print hal-03031766, HAL.
    5. repec:jss:jstsof:23:i01 is not listed on IDEAS
    6. Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.
    7. Frezza, Massimiliano & Bianchi, Sergio & Pianese, Augusto, 2021. "Fractal analysis of market (in)efficiency during the COVID-19," Finance Research Letters, Elsevier, vol. 38(C).
    8. Pierre R. Bertrand & Abdelkader Hamdouni & Samia Khadhraoui, 2012. "Modelling NASDAQ Series by Sparse Multifractional Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 107-124, March.
    9. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Peng, Qidi & Zhao, Ran, 2018. "A general class of multifractional processes and stock price informativeness," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 248-267.
    11. Massimiliano Frezza & Sergio Bianchi & Augusto Pianese, 2022. "Forecasting Value-at-Risk in turbulent stock markets via the local regularity of the price process," Computational Management Science, Springer, vol. 19(1), pages 99-132, January.
    12. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
    13. Ayoub Ammy-Driss & Matthieu Garcin, 2020. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Papers 2007.10727, arXiv.org, revised Nov 2021.
    14. Aloy Marcel & Tong Charles Lai & Peguin-Feissolle Anne & Dufrénot Gilles, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
    15. Céline Lacaux, 2005. "Fields with Exceptional Tangent Fields," Journal of Theoretical Probability, Springer, vol. 18(2), pages 481-497, April.
    16. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    17. Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
    18. Loosveldt, L., 2023. "Multifractional Hermite processes: Definition and first properties," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 465-500.
    19. Peng, Qidi, 2011. "Uniform Hölder exponent of a stationary increments Gaussian process: Estimation starting from average values," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1326-1335, August.
    20. Balança, Paul & Herbin, Erick, 2012. "2-microlocal analysis of martingales and stochastic integrals," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2346-2382.
    21. Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:3:p:1004-1045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.