IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v130y2020ics1364032120302501.html
   My bibliography  Save this article

A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges

Author

Listed:
  • Chojnacka, K.
  • Witek-Krowiak, A.
  • Moustakas, K.
  • Skrzypczak, D.
  • Mikula, K.
  • Loizidou, M.

Abstract

The aim of this review was to discuss the transition from traditional irrigation to fertigation using reclaimed wastewater in countries with moderate climate. In most European countries there are no regulations on waste water reuse and on the other hand there are countries where regulations are very strict. An important aspect is to standardize the restrictions, which would minimize uncontrolled use of wastewater for fertigation. Wastewater is a source of plant nutrients and organic matter, but can be contaminated with chemicals and pathogens, which in turn can lead to secondary environmental pollution. The reuse of recovered wastewater may require modification of the wastewater treatment process line or construction of stabilization tanks at farms. In both cases, it is necessary to set up initial installations in real systems in order to develop principles for irrigation with reclaimed wastewater for soil and temperate climate conditions. The additional treatment steps required are also associated with large investments, but could reduce fertilization costs and, more importantly, improve the environmental situation. The current scale of fertilizer application does not allow conventional fertilization to fulfill global demand. The introduction of such a solution is a step towards the practical application of circular economy and sustainable crop production. The paper discusses a challenges related with implementation of transition from conventional irrigation to fertigation with reclaimed wastewater in moderate climate countries. A special focus to providing fertilizer nutrients in terms of required doses was undertaken.

Suggested Citation

  • Chojnacka, K. & Witek-Krowiak, A. & Moustakas, K. & Skrzypczak, D. & Mikula, K. & Loizidou, M., 2020. "A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:rensus:v:130:y:2020:i:c:s1364032120302501
    DOI: 10.1016/j.rser.2020.109959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120302501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kokkora, Maria I. & Papaioannou, Chryssoula & Vyrlas, Panagiotis & Petrotos, Konstantinos & Gkoutsidis, Paschalis & Makridis, Christos, 2015. "Maize Fertigation with Treated Olive Mill Wastewater: Effects on Crop Production and Soil Properties," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(4).
    2. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    3. Chen, Hong-Ge & Zhang, Y.-H. Percival, 2015. "New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 117-132.
    4. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    5. Yasmeen, Tahira & Ali, Qasim & Islam, Faisal & Noman, Ali & Akram, M. Sohail & Javed, M. Tariq, 2014. "Biologically treated wastewater fertigation induced growth and yield enhancement effects in Vigna radiata L," Agricultural Water Management, Elsevier, vol. 146(C), pages 124-130.
    6. Agrafioti, Evita & Diamadopoulos, Evan, 2012. "A strategic plan for reuse of treated municipal wastewater for crop irrigation on the Island of Crete," Agricultural Water Management, Elsevier, vol. 105(C), pages 57-64.
    7. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    8. Martínez-Cortijo, J. & Ruiz-Canales, A., 2018. "Effect of heavy metals on rice irrigated fields with waste water in high pH Mediterranean soils: The particular case of the Valencia area in Spain," Agricultural Water Management, Elsevier, vol. 210(C), pages 108-123.
    9. Urbano, Vanessa Ribeiro & Mendonça, Thaís Grandizoli & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2017. "Effects of treated wastewater irrigation on soil properties and lettuce yield," Agricultural Water Management, Elsevier, vol. 181(C), pages 108-115.
    10. Hamilton, Andrew J. & Boland, Anne-Maree & Stevens, Daryl & Kelly, Jim & Radcliffe, John & Ziehrl, Angelika & Dillon, Peter & Paulin, Bob, 2005. "Position of the Australian horticultural industry with respect to the use of reclaimed water," Agricultural Water Management, Elsevier, vol. 71(3), pages 181-209, February.
    11. Muyen, Zahida & Moore, Graham A. & Wrigley, Roger J., 2011. "Soil salinity and sodicity effects of wastewater irrigation in South East Australia," Agricultural Water Management, Elsevier, vol. 99(1), pages 33-41.
    12. Rahil, M.H. & Antonopoulos, V.Z., 2007. "Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed wastewater," Agricultural Water Management, Elsevier, vol. 92(3), pages 142-150, September.
    13. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    14. Nikkhah, Amin & Royan, Mahsa & Khojastehpour, Mehdi & Bacenetti, Jacopo, 2017. "Environmental impacts modeling of Iranian peach production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 677-682.
    15. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    16. Hussain, M. Iftikhar & Muscolo, Adele & Farooq, Muhammad & Ahmad, Waqar, 2019. "Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments," Agricultural Water Management, Elsevier, vol. 221(C), pages 462-476.
    17. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
    18. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
    19. María Fernanda Jaramillo & Inés Restrepo, 2017. "Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    20. Pedrero, Francisco & Camposeo, Salvatore & Pace, Bernardo & Cefola, Maria & Vivaldi, Gaetano Alessandro, 2018. "Use of reclaimed wastewater on fruit quality of nectarine in Southern Italy," Agricultural Water Management, Elsevier, vol. 203(C), pages 186-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bolinches, Antonio & Blanco-Gutiérrez, Irene & Zubelzu, Sergio & Esteve, Paloma & Gómez-Ramos, Almudena, 2022. "A method for the prioritization of water reuse projects in agriculture irrigation," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Nikafkar, Nasrin & Alroaia, Younos Vakil & Heydariyeh, Seyyed Abdollah & Schleiss, Anton J., 2023. "Economic and commercial analysis of reusing dam reservoir sediments," Ecological Economics, Elsevier, vol. 204(PB).
    3. Alexandra Afonso & Carlos Ribeiro & Maria João Carvalho & Tânia Correia & Pedro Correia & Mariana Regato & Idália Costa & Annabel Fernandes & Adelaide Almeida & Ana Lopes & Fátima Carvalho, 2023. "Pretreated Agro-Industrial Effluents as a Source of Nutrients for Tomatoes Grown in a Dual Function Hydroponic System: Tomato Quality Assessment," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    4. Lu, Shibao & Zhang, Xiaoling & Peng, Huarong & Skitmore, Martin & Bai, Xiao & Zheng, Zhihong, 2021. "The energy-food-water nexus: Water footprint of Henan-Hubei-Hunan in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    6. Mahmoud S. Hashem & Wei Guo & Xuebin Qi & Ping Li, 2022. "Assessing the Effect of Irrigation with Reclaimed Water Using Different Irrigation Techniques on Tomatoes Quality Parameters," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    7. Shan-e-hyder Soomro & Xiaotao Shi & Jiali Guo & Caihong Hu & Haider M. Zwain & Chengshuai Liu & Muhammad Zeb Khan & Chaojie Niu & Chenchen Zhao & Zubair Ahmed, 2023. "Appraisal of climate change and source of heavy metals, sediments in water of the Kunhar River watershed, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2191-2209, March.
    8. Nayebloie, Fatemeh & Kouchakzadeh, Mahdi & Ebrahimi, Kumars & Homaee, Mahdi & Abbasi, Fariborz, 2022. "Improving fertigation efficiency by numerical modelling in a lettuce subsurface drip irrigation farm," Agricultural Water Management, Elsevier, vol. 270(C).
    9. Perez-Mercado, Luis Fernando & Lalander, Cecilia & Joel, Abraham & Ottoson, Jakob & Iriarte, Mercedes & Vinnerås, Björn, 2022. "Managing microbial risks in informal wastewater-irrigated agriculture through irrigation water substitution," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Sara AbdelMoula & Mohamed T. Sorour & Samia A. Abdelrahman Aly, 2021. "Cost Analysis and Health Risk Assessment of Wastewater Reuse from Secondary and Tertiary Wastewater Treatment Plants," Sustainability, MDPI, vol. 13(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    2. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.
    4. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Sana Khalid & Muhammad Shahid & Natasha & Irshad Bibi & Tania Sarwar & Ali Haidar Shah & Nabeel Khan Niazi, 2018. "A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries," IJERPH, MDPI, vol. 15(5), pages 1-36, May.
    6. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    7. Hashmat, Sherjeel & Shahid, Muhammad & Tanwir, Kashif & Abbas, Saghir & Ali, Qasim & Niazi, Nabeel Khan & Akram, Muhammad Sohail & Saleem, Muhammad Hamzah & Javed, Muhammad Tariq, 2021. "Elucidating distinct oxidative stress management, nutrient acquisition and yield responses of Pisum sativum L. fertigated with diluted and treated wastewater," Agricultural Water Management, Elsevier, vol. 247(C).
    8. Chaganti, Vijayasatya N. & Ganjegunte, Girisha & Niu, Genhua & Ulery, April & Flynn, Robert & Enciso, Juan M. & Meki, Manyowa N. & Kiniry, James R., 2020. "Effects of treated urban wastewater irrigation on bioenergy sorghum and soil quality," Agricultural Water Management, Elsevier, vol. 228(C).
    9. Mancini, G. & Luciano, A. & Bolzonella, D. & Fatone, F. & Viotti, P. & Fino, D., 2021. "A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    11. Andreas N. Angelakis & Mohammad Valipour & Abdelkader T. Ahmed & Vasileios Tzanakakis & Nikolaos V. Paranychianakis & Jens Krasilnikoff & Renato Drusiani & Larry Mays & Fatma El Gohary & Demetris Kout, 2021. "Water Conflicts: From Ancient to Modern Times and in the Future," Sustainability, MDPI, vol. 13(8), pages 1-31, April.
    12. Mabasa, Nyiko C. & Jones, Clifford L.W. & Laing, Mark, 2021. "The use of treated brewery effluent for salt tolerant crop irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    13. Maestre-Valero, J.F. & Gonzalez-Ortega, M.J. & Martinez-Alvarez, V. & Gallego-Elvira, B. & Conesa-Jodar, F.J. & Martin-Gorriz, B., 2019. "Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain," Agricultural Water Management, Elsevier, vol. 218(C), pages 174-181.
    14. Zolfaghary, Parvin & Zakerinia, Mahdi & Kazemi, Hossein, 2021. "A model for the use of urban treated wastewater in agriculture using multiple criteria decision making (MCDM) and geographic information system (GIS)," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    16. Zhenjie Du & Shuang Zhao & Yingjun She & Yan Zhang & Jingjing Yuan & Shafeeq Ur Rahman & Xuebin Qi & Yue Xu & Ping Li, 2022. "Effects of Different Wastewater Irrigation on Soil Properties and Vegetable Productivity in the North China Plain," Agriculture, MDPI, vol. 12(8), pages 1-13, July.
    17. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    18. Gorfie, Belihu Nigatu & Tuhar, Abraham Woldemichael & Keraga, Amare shiberu & Woldeyohannes, Aemiro Bezabih, 2022. "Effect of brewery wastewater irrigation on soil characteristics and lettuce (Lactuca sativa) crop in Ethiopia," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Salar Rezapour & Amin Nouri & Hawzhin M. Jalil & Shawn A. Hawkins & Scott B. Lukas, 2021. "Influence of Treated Wastewater Irrigation on Soil Nutritional-Chemical Attributes Using Soil Quality Index," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    20. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:130:y:2020:i:c:s1364032120302501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.