IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v11y2007i6p1260-1274.html
   My bibliography  Save this article

Harmonization of hydropower plant with the environment

Author

Listed:
  • Balc[breve]iunas, Povilas
  • Zdankus, Narimantas

Abstract

The influence of a hydropower plant on the environment is analyzed. The frequent starting and stopping of hydropower plant turbines are considered to cause the erosion of river-bed and damage to river flora, fauna and the environment generally. The harm may be reduced by passing the entire runoff of the river through turbines without changing the flow of runoff and the accumulation of water in a reservoir [Klimpt J-E, Riveiro C, Puranen H, Koch F. Recommendations for sustainable hydroelectric development. Energy Policy 2002; 30(14): 1305-1312]. This idea cannot be realized in a traditional hydropower plant. The range of runoff changes of Lithuanian rivers is much broader than the capacity of one or more turbines of the same power. The characteristics of several turbine types are analyzed. The carrying capacity of a cross flow turbine is regarded to have the widest range. In addition, the width of the range may be expanded with special auxiliary equipment. This type of turbine is equivalent to two or even three turbines of varying capacities, and it can handle the discharges from any season. The possibilities for expanding the range of turbine capacity by means of working with varying speeds of rotation are discussed. Special mechatronic systems for controlling mechanical and electrical equipment of a hydropower plant, working with varying speed of turbines revolution, are presented. The investigation of mathematical models of the systems under both autonomous and systematic regimes shows their efficient operation and sufficient quality of electrical power.

Suggested Citation

  • Balc[breve]iunas, Povilas & Zdankus, Narimantas, 2007. "Harmonization of hydropower plant with the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1260-1274, August.
  • Handle: RePEc:eee:rensus:v:11:y:2007:i:6:p:1260-1274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(05)00106-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klimpt, Jean-Etienne & Rivero, Cristina & Puranen, Hannu & Koch, Frans, 2002. "Recommendations for sustainable hydroelectric development," Energy Policy, Elsevier, vol. 30(14), pages 1305-1312, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alonso-Tristán, C. & González-Peña, D. & Díez-Mediavilla, M. & Rodríguez-Amigo, M. & García-Calderón, T., 2011. "Small hydropower plants in Spain: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2729-2735, August.
    2. Fang, Yiping & Wang, Mingjie & Deng, Wei & Xu, Keyan, 2010. "Exploitation scale of hydropower based on instream flow requirements: A case from southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2290-2297, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yucesan, Melih & Kahraman, Gökhan, 2019. "Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP," Energy Policy, Elsevier, vol. 126(C), pages 343-351.
    2. Huiyan Wang & Yong Li & Jia Li & Mengyuan Yu, 2020. "Internalization of External Benefits Brought by Hydropower Development," IJERPH, MDPI, vol. 17(1), pages 1-15, January.
    3. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    4. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    5. Kumar, Deepak & Katoch, S.S., 2014. "Sustainability indicators for run of the river (RoR) hydropower projects in hydro rich regions of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 101-108.
    6. Sara Sousa & Anabela Botelho & Lígia M. Costa Pinto & Marieta Valente, 2019. "How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants," Energies, MDPI, vol. 12(15), pages 1-18, August.
    7. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    8. Botelho, Anabela & Ferreira, Paula & Lima, Fátima & Pinto, Lígia M. Costa & Sousa, Sara, 2017. "Assessment of the environmental impacts associated with hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 896-904.
    9. Dudhani, Surekha & Sinha, A.K. & Inamdar, S.S., 2006. "Assessment of small hydropower potential using remote sensing data for sustainable development in India," Energy Policy, Elsevier, vol. 34(17), pages 3195-3205, November.
    10. Morimoto, Risako, 2013. "Incorporating socio-environmental considerations into project assessment models using multi-criteria analysis: A case study of Sri Lankan hydropower projects," Energy Policy, Elsevier, vol. 59(C), pages 643-653.
    11. Olaya, Yris & Arango-Aramburo, Santiago & Larsen, Erik R., 2016. "How capacity mechanisms drive technology choice in power generation: The case of Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 563-571.
    12. Siddiqi, Afreen & Wescoat, James L. & Humair, Salal & Afridi, Khurram, 2012. "An empirical analysis of the hydropower portfolio in Pakistan," Energy Policy, Elsevier, vol. 50(C), pages 228-241.
    13. Pérez-Díaz, Juan I. & Wilhelmi, José R., 2010. "Assessment of the economic impact of environmental constraints on short-term hydropower plant operation," Energy Policy, Elsevier, vol. 38(12), pages 7960-7970, December.
    14. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    15. Arango, Santiago & Larsen, Erik R., 2010. "The environmental paradox in generation: How South America is gradually becoming more dependent on thermal generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2956-2965, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:11:y:2007:i:6:p:1260-1274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.